AFTERLE Ares(202)153072-02/03/2022

Deliverable reference number and title:

D8.6 – Dissemination and exploitation activities

Due date of deliverable: 28/02/2022 Actual submission date: 02/03/2022

Industries 50354 Hü	tute rk Knapsack					
Responsit	ole Author					
Freya Sau	tner	nova-Institute		freya.sautner@nova- nstitut.de	+49 2233 48	14 79
Additiona	l Authors					
María Lop	ez	IDENER	<u>I</u>	<u> Maria.lopez@idener.es</u>	+34 9544602	278
Туре				emination Level		
R	Document, report		PU	Public		\boxtimes
DEM	Demonstrator, pile		со	Confidential, only for me consortium (including the		
DEC	Websites, patent etc.	fillings, videos,		Services)		
OTHER						

Horizon 2020 European Union Funding for Research & Innovation

This project receives funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 745737. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of Bio Based Industries Joint Undertaking. The Bio Based Industries Joint Undertaking is not responsible for any use that may be made of the information contained therein.

Table of contents

1	Abb	reviations	7
2	Pub	lishable executive summary	
3	Intro	oduction	
	3.1	Dissemination strategy	
	3.2	Exploitation strategy	
4	Diss	emination activities	
	4.1	Overview of planned and actual activities	
	4.2	D8.2 – Project website	
	4.2.	1 Website statistics	
	4.3	Events	
	4.3.	1 AFTERLIFE Webinar on Advanced Filtration Technologies for the Recovery	and Later
	Con	version of Relevant Fractions from Wastewater 2019	
	4.3.	2 BBI JU Stakeholder Forum 2019	
	4.3.	3 D8.5 – AFTERLIFE stakeholder workshop 2020	19
	4.3.4	4 MS8 – BBI Workshop on Bio-Based Polymers 2021	
	4.3.	5 Visits of conferences, workshops and other events	25
	4.3.	6 Other special events	29
	4.4	Publications	
	4.5	Press releases and articles	
	4.6	Social media	
	4.7	Dissemination material	
	4.7.	1 Project identity	
	4.7.	2 D8.3 – Leaflet	
	4.7.	3 Roll-up	
	4.7.4	4 D8.4 – Videos	
	4.7.	5 Project group: Value Creation from Wastewater	
	4.8	Dissemination outlook	
5	Expl	loitation roadmap	35
	5.1	List of Key Exploitable Results (KERs)	35
	5.2	KER1: Multidisciplinary design optimisation (MDO) implementation	35
	5.2.	1 Characterisation of KER	
	5.2.2	2 KER risk assessment map	
	5.3	KER3: Integrated waste and wastewater conversion into VFA	
	5.3.	1 Characterisation of KER	
	5.3.2	2 KER risk assessment map	41
	5.4	KER4: Development of a cost-effective cascade of filtration units	
	5.4.		
	5.4.2	2 KER risk assessment map	
	5.5	KER5: Optimised PHA production from food wastewater	

5.	5.1	Characterisation of KER			
5.	5.2	KER risk assessment map			
5.6	KEF	R6: Development of methodologies for the processing of biopolymers int	o thermoplastics		
	48				
5.	6.1	Characterisation of KER			
5.	6.2	KER risk assessment map	51		
5.7	KEF	7: Development of processes for the extraction of aminoacids	52		
5.	7.1	Characterisation of KER	52		
5.	7.2	KER risk assessment map	54		
5.8	KEF	88: Development of a process for FOG removal	55		
5.	8.1	Characterisation of KER	55		
5.	8.2	KER risk assessment map	57		
6 AI	FTERLI	FE Technology: Market analysis and exploitation model	59		
6.1	Ma	rket assessment	59		
6.2	Exp	loitation model	61		
6.3	Nex	xt steps and further development paths	61		
7 Co	onclusi	on	62		
Annex	I. Leaf	let A5	63		
Annex	Annex II. Leaflet A4				
Annex	Annex III. Roll-up				
Annex	Annex IV. Risks assessment maps				
Annex	Annex V. The Business Plan Structure				
The	Busine	ss Plan Structure	73		

List of figures

Figure 1: Roadmap for exploitation strategy definition	10
Figure 2: Website title page	
Figure 3: World map – Total visits over the project duration	13
Figure 4: Total visits over the project duration	13
Figure 5: Total pageviews over the project duration	14
Figure 6: Total visits per country	14
Figure 7: Total visits per continent	14
Figure 8: Screenshot oft he AFTERLIFE website – Partners	15
Figure 9: Screenshot of AFTERLIFE website – News	15
Figure 10: Screenshot of AFTERLIFE website – Media	15
Figure 11: Average visit duration, bounces, actions and generation time of the AFTERLIFE website	16
Figure 12: Website visits from Europe	
Figure 13: Average time spent on website in Europe	17
Figure 14: Searches, downloads and maximum actions on AFTERLIFE website	17
Figure 15: Dr. María López (right) and Dr. Seena Koyadan presenting AFTERLIFE at the BBI	JU
Stakeholder Forum 2019 in Brussels	19
Figure 16: MS8 Dissemination – Screenshot oft the article on Renewable Carbon News	20
Figure 17: MS8 Dissemination – LinkedIn post	21
Figure 18: MS8 – Dissemination of the BBI JU Event on the AFTERLIFE website	22
Figure 19: MS8 – Programm of the Workshop on Bio-Based Polymers	23
Figure 20: MS8 – Event banner	24
Figure 21: MS8 – Screenshot of customised registration page	24
Figure 22: Renewable Materials Conference journal ad 2021	29
Figure 23: Article on MS8 event	32
Figure 24: AFTERLIFE project logo	33
Figure 25: AFTERLIFE colours	33
Figure 26: Priority map of KER1 – with risk numbers	38
Figure 27. Priority map of KER3 – with risk numbers	41
Figure 28. Priority map of KER4 – with risk numbers	44
Figure 29. Priority map of KER5 – with risk numbers	47
Figure 30. Priority map of KER6 – with risk numbers	51
Figure 31. Priority map of KER7 – with risk numbers	55
Figure 32. Priority map of KER8 – with risk numbers	58

List of tables

Table 1: Deliverables	11
Table 2: Milestones	11
Table 3: Total number of dissemination activities	12
Table 4: Visited events during the project period	25
Table 5: Scientific publications	30
Table 6: List of KERs	35
Table 7. Description of KER1	35
Table 8. KER1's Exploitation route (how the KER will be further exploited)	37
Table 9: Exploitation roadmap of KER1	37
Table 12. Summarising risks table of KER1	39
Table 13. Description of KER3	39
Table 14. KER3's Exploitation route	40
Table 15. Exploitation roadmap of KER3	
Table 17. Summarising risks table of KER3	42
Table 18. Description of KER4	42
Table 19. KER4's Exploitation route	43
Table 20. Exploitation roadmap of KER4	43
Table 22. Summarising risks table of KER4	44
Table 23. Description of KER5	45
Table 24. KER5's Exploitation route	46
Table 25. Exploitation roadmap of KER5	46
Table 27. Summarising risks table of KER5	47
Table 28. Description of KER6	48
Table 29. KER6's Exploitation route	49
Table 30. Exploitation roadmap of KER6	50
Table 32. Summarising risks table of KER6	
Table 33. Description of KER7	52
Table 28. KER7's Exploitation route	53
Table 29. Exploitation roadmap of KER7	54
Table 37. Summarising risks table of KER7	55
Table 38. Description of KER8	55
Table 39. KER8's Exploitation route	56
Table 40. Exploitation roadmap of KER8	57
Table 42. Summarising risks table of KER8	58

1 Abbreviations

- D Deliverable
- EC European Commission
- MS Milestone
- TRL Technology Readiness Level
- WP Work Package

2 Publishable executive summary

AFTERLIFE proposes a flexible, cost- and resource-efficient process framed in the zero-waste and circular economy approach for the recovery and valorisation of the relevant fractions from wastewater. The first step of such process is an initial step consisting of a cascade of membrane filtration units for the separation of the totally of solids in wastewater. Then, the concentrates recovered in each unit will be treated to obtain high-pure extracts and metabolites or, alternatively, to be converted into value-added biopolymers (polyhydroxyalkanoates). Moreover, the outflow of the process is an ultra-pure water stream that can be directly reused.

The outcomes of the project are focused on:

- Demonstration of an integrated pilot using real wastewater from three water intensive food processing industries (fruit processing, cheese and sweets manufacturing)
- Demonstration of the applicability of the recovered compounds and the value-added bio products in manufacturing environments

The design and optimisation of the AFTERLIFE process following a holistic approach will contribute to improve performance and reduce the costs associated to wastewater treatment by maximising the value recovery.

The overall goal of the project AFTERLIFE was to demonstrate at TRL (Technology Readiness Level) 5 a promising innovative wastewater treatment with the simultaneous recovery of compounds of interest and the conversion of the rest of the organic matter into a high-volume added value biopolymer. Specific objectives have been defined and pursued in each WP (Work Package) to reach this goal:

- WP1 Objective A. To develop the filtration system through the use of membrane filtration unit for the recovery of suspended and soluble solids in wastewater.
- WP2 Objective B. To develop the process for the recovery and purification of valuable compounds in the concentrates from filtration step
- WP3 Objective C. To develop the conversion of the low value-added organic matter into PHA by an anaerobic/aerobic process
- WP4 Objective D. To optimise the resources in the process following a circular economy approach
- WP5 Objective E. To design and optimise the overall AFTERLIFE process from a holistic point of view following a Multidisciplinary Design Optimisation (MDO) approach
- WP6 Objective F. To conduct a demonstration at BBE Pilot Plant using real industrial wastewater and to generate the end products
- WP7 Objective G. To provide proof of economic and industrial feasibility for AFTERLIFE process and comprehensive LCA and cost assessment

• WP8 – Objective H. To promote the exploitation of the project's results and expand the impact of the process

The overall objective to demonstrate the innovative wastewater treatment with the simultaneous recovery of compounds of interest and the conversion of the rest of the organic matter into a high-volume added value biopolymer at TRL-5 was pursued. All of the planned steps were carried out and results can be presented in each WP. The water purification could be demonstrated and also the extraction of value-added components and the application thereof in food products. The production of bio-based plastics products was demonstrated as well. Some difficulties were encountered when conducting the fermentation processes and the production of bio-based plastics products. As a result, these difficulties lead to new insights and a better starting point for further research.

Under the project website URL <u>www.afterlife-project.eu</u>, more information on the results, dissemination material and news items can be found.

3 Introduction

This document shall give an overview of the dissemination and exploitation activities conducted during the project period of the AFTERLIFE project. Moreover, it shall verify that all planned activities were carried out and, as far as possible, it should also show the effects of the dissemination activities. The effects are mainly measured in "persons reached", "visits" or "clicks". Newly established collaborations and contacts are also very important, but most often not well measurable, especially when it comes to contacts of individuals involved in the project.

3.1 Dissemination strategy

Work Package 8 provided a dissemination strategy described in the communication and dissemination plan. It served to support and enhance the key project objectives related to the effective exploitation of the results. Work package 8 was led by NOVA and involved all other partners.

3.2 Exploitation strategy

The exploitation strategy of the key results in AFTERLIFE has been defined accounting on the support of the Horizon Results Booster services of the European Commission. Specifically, following the developed internal exploitation discussion, several workshops guided by LC Innoconsult have been organised to discuss the definition of the key exploitable results and the exploitation roadmap for each of them. The characterisation, use options and exploitation roadmap have been defined for the KERs. Then, a business plan has been discussed and drafted considering the value proposition identified to the activities in the project (Figure 1).

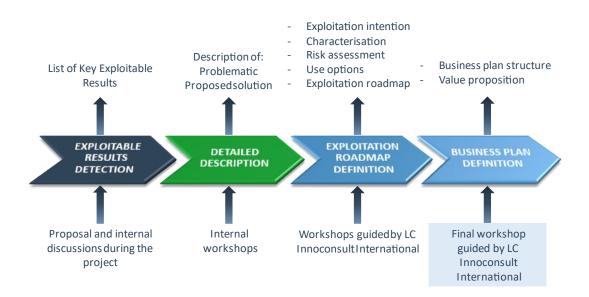


Figure 1: Roadmap for exploitation strategy definition

4 Dissemination activities

4.1 Overview of planned and actual activities

Number	Title	Lead	Level	Due in month	Status
D8.1	Dissemination and exploitation plan	nova	Confidential	6	Completed
D8.2	Website	nova	Public	6	Completed
D8.3	Leaflet	nova	Public	9	Completed
D8.4	Video	idener	Public	24	Completed
D8.5	Stakeholder workshop	nova	Public	38	Completed
D8.6	Dissemination & exploitation activities report	nova	Public	48	Completed
D8.7	Replication for other industries	idener	Confidential	48	Completed

Table 1: Deliverables

Table 2 shows the planned deliverables for WP 8 and their completion status. Table 3 shows the planned and accomplished milestones in WP 8:

Number	Title	Lead	Due in month	Status
MS1	Website online	nova	4	Completed
MS8	BBI JU event	nova	42	Completed

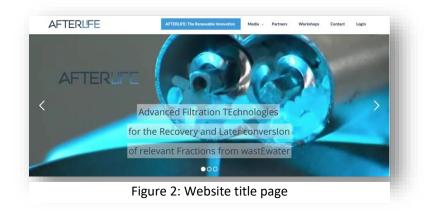

More information about the individual deliverables and milestones is included within this report on the following pages. The table on the next page is showing the total numbers of dissemination activities conducted during the project period. It also shows the approximate number of persons reached and the number of scientific publications.

Table 3: Total number of dissemination activities					
	Activities	Total No. of Activities			
Number of	Organisation of a Conference	12			
Dissemination and	Organisation of a Workshop	6			
Communication	Press Release	2			
activities linked to	Non-scientific and Non-Peer-Reviewed Publication	5			
AFTERLIFE	(popularised publication)				
	Exhibition	4			
	Flyer	1			
	Training	0			
	Social Media	12			
	Website	17			
	Communication Campaign (e.g. Radio, TV)	1			
	Participation in a Conference	18			
	Participation in a Workshop	6			
	Participation in an Event other than a Conference or	6			
	a Workshop				
	Video/Film	1			
Brokerage Event (0			
	Pitch Event (
	Trade Fair				
	Participation in Activities Organized Jointly with				
other H2020 Projects					
	Other (dissemination/communication activity)	2			
Number of persons	Scientific Community (Higher Education, Research)	99512,5			
reached, in the	Industry	123152,6			
context of all	Civil Society	45693			
dissemination and	General Public	511568,9			
communication	Policy Makers	17			
activities	Media	30			
	Investors	20			
	Customers	10			
	Other	28			
Scientific	Article in Journal	3			
Publications	Publication in Conference Proceedings/Workshop	0			
	Books/Monographs	0			
	Chapters in Books	0			
	Thesis/Dissertation	1			
	Other (publication)	0			

4.2 D8.2 – Project website

4.2.1 Website statistics

The following graphs and images all show data for the project period from 28 February 2018 until 31 January 2022. The total number of visits over these four years is 584,768, as shown in the following figure.

Figure 3: World map – Total visits over the project duration

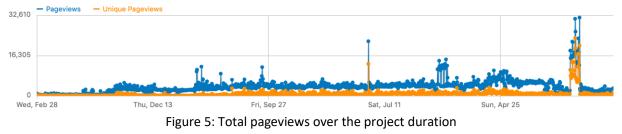



Figure 4 shows that the number of visits rose gently during the project duration. The peaks are very likely to be attempted hacker attacks as they are too high to be induced by a dissemination activity. Figure 5 shows the total pageviews and the unique pageviews over the project duration. Pageviews are the number of views of any of the sub pages of the AFTERLIFE project website. Unique pageviews are the number of pageviews that according to the information that the analytics application is gathering (like IP addresses and location of the users) can be assigned to one specific user.

Most visits came from north America, Europe and Asia and more specifically from the United States of America, Germany, France, Canada and Russia.

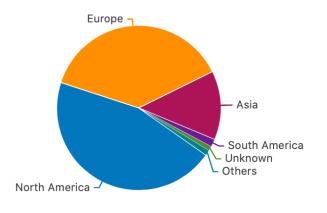


Figure 7: Total visits per continent

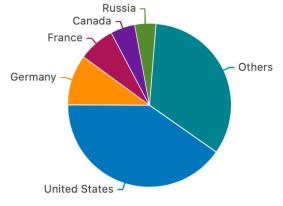


Figure 6: Total visits per country

Most visited pages were:

- 1. Partners (Figure 8)
- 2. News (Figure 9)
- 3. Media (Figure 10)

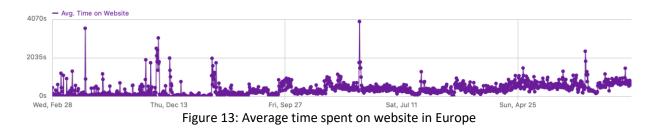
Figure 8: Screenshot oft he AFTERLIFE website – Partners

Figure 9: Screenshot of AFTERLIFE website - News

Figure 10: Screenshot of AFTERLIFE website - Media

The following figure shows an overview of the average duration of a website visit, the percentage of bounced visits (visitor left website after viewing just one page), the average number of actions per visit and the average generation time of the website over the AFTERLIFE project duration.

8 min 42s average visit duration 52% visits have bounced (left the website after one page) **11.4** actions (page views, downloads, outlinks and ---internal site searches) per visit 2.37s average generation time


Figure 11: Average visit duration, bounces, actions and generation time of the AFTERLIFE website

The following figure shows the total number of AFTERLIFE website visits from Europe. The graph can be described as similar to the total number of worldwide visits.

The following figure shows the average time spent on the website during a visit from Europe. It is also gently rising during the project period which could be explained by growing and mor interesting content as publications and results were included.

Below, the number of searches, downloads and maximum actions in one visit are shown for the project website. The peaks may refer to attempted hacker attacks.

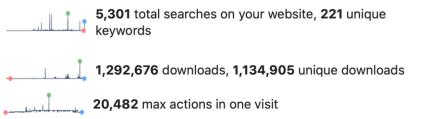


Figure 14: Searches, downloads and maximum actions on AFTERLIFE website

The following map shows the total number of 6,658,483 actions on the AFTERLIFE website and their distribution over the world. It can be assumed that the project was noticed also outside of Europe.

4.3 Events

4.3.1 AFTERLIFE Webinar on Advanced Filtration Technologies for the Recovery and Later Conversion of Relevant Fractions from Wastewater 2019

The AFTERLIFE Webinar on Advanced Filtration Technologies for the Recovery and Later Conversion of Relevant Fractions from Wastewater took place on 15 October 2019. The webinar addressed the following topics:

- 1. Filtration, solvent extraction and steam extraction, with an eye on the big numbers
- 2. Recovery and natural compounds of interest from agri-food wastes

More detailed information is available on <u>www.afterlife-project.eu/webinar</u> and the presentation slides are downloadable here via <u>www.afterlife-project.eu/wp-content/uploads/2019/10/AFTERLIFE-webinar.pdf</u>.

4.3.2 BBI JU Stakeholder Forum 2019

AFTERLIFE was present at the BBI JU stakeholder forum on 3–4 December 2019 in Brussels. This public event brought together the bio-based industries community and facilitated open discussions on the impact, achievements and strategic direction of the BBI JU projects. Dr. María López gave a presentation about the project and AFTERLIFE was presented at a booth:

Figure 15: Dr. María López (right) and Dr. Seena Koyadan presenting AFTERLIFE at the BBI JU Stakeholder Forum 2019 in Brussels

4.3.3 D8.5 – AFTERLIFE stakeholder workshop 2020

The AFTERLIFE stakeholder workshop took place online on 9 October 2020. Here, the project consortium discussed the challenges in the wastewater industry and the project results so far. Presentation topics were:

 Versatile End-of-Life options for AFTERLIFE products – Prof. MSc. Jan Ravenstijn (GO!PHA, The Netherlands)

- The Rheticus Project Dr. Thomas Haas (Evonik, Germany)
- Advanced Filtration Technologies for the Recovery and Later Conversion of Relevant Fractions from Wastewater Dr. Maria Lopez (Idener, Spain)
- Membrane Technology in Valuables and Water Recovery from Wastewaters of Food Industry

 Dr. Antti Gronroos (VTT, Finland)
- PHA Production from Industrial Waste Streams as part of Sustainable Plastics Production towards a Circular Plastics Economy Dr. Oliver Drzyzga (CIB-CSIS, Spain)
- Production of Bio-Based Volatile Fatty Acids from Organic Waste as Chemical Building Blocks
 Dr. Nicola Frison (Innoven, Italy)
- Sustainable Extraction of Amino Acids from Agro-Industrial Wastewater Streams Dr. Javier Ceras (Lurederra, Spain)

The presentation slides are available on the project website: www.afterlife-project.eu/workshop

4.3.4 MS8 – BBI Workshop on Bio-Based Polymers 2021

On 29 March 2021, Milestone 8 was reached with the organisation of a workshop on bio-based polymers together with six other projects under the BBI JU call from 2016.

The event was disseminated via an article on renewable carbon news (<u>www.renewable-carbon.eu/news/bbi-workshop-on-bio-based-polymers-on-29-march-2021</u>, Figure 16), LinkedIn (Figure 17), Twitter, the nova-Institutes monthly newsletter and the AFTERLIFE project website (Figure 18 and Figure 19 and <u>www.afterlife-project.eu/bbi-workshop-2021</u>).

Figure 16: MS8 Dissemination – Screenshot oft the article on Renewable Carbon News

Figure 17: MS8 Dissemination – LinkedIn post

Figure 18: MS8 – Dissemination of the BBI JU Event on the AFTERLIFE website

AFTERLIFE	The Project 🗸 Media 🗸 Partners	s Workshops Contact Log
BBI WORKSHOP ON E	BIO-BASED POLYMERS	e de
Preliminary Progra Monday, 29 March 2021	amme	
	WORKSHOP OPENING Freya Sautner, nova-Institute (Germany)	13:00 CET
	AFTERLIFE – ADVANCED FILTRATION TECHNOLOGIES FOR THE RECOVERY AND LATER CONVERSION OF RELEVANT FRACTIONS FROM WASTEWATER Dr. María López Abelairas, Idener (Spain)	13:05 CET
	BARBARA – BIOPOLYMERS WITH ADVANCED FUNCTIONALITIES FOR BUILDING AND AUTOMOTIVE PARTS PROCESSED THROUGH ADDITIVE MANUFACTURING Lidia García Quiles, Tecnopackaging (Spain)	13:25 CET
9	BIOBARR – NEW BIO-BASED FOOD PACKAGING MATERIALS WITH ENHANCED BARRIER PROPERTIES Marianna Faraldi, Tecnoalimenti (Italy)	13:45 CET
(SINGLE-USE PLASTICS DIRECTIVE AND DISCUSSION Nicolas Hark, nova-Institute (Germany)	14:05 CET
	COFFEE BREAK	14:35 CET
	BIOMOTIVE – ADVANCED BIOBASED POLYURETHANES AND FIBRES FOR THE AUTOMOTIVE INDUSTRY WITH INCREASED ENVIRONMENTAL SUSTAINABILITY Speaker yet to be decided	15:00 CET
(I)	BIOSMART PACKAGING, THE INTELLIGENT BIOBASED PACKAGING SOLUTION TO INCREASE FOOD SHELF LIFE Dr. Amaya Igartua, TEKNIKER (Spain)	15:20 CET
E	PEFERENCE - FROM BIO-BASED FEEDSTOCKS VIA DI-ACIDS TO MULTIPLE ADVANCED BIO-BASED MATERIALS WITH A PREFERENCE FOR POLYETHYLENE FURANOATE Dr. Ed de Jong, Avantium (The Netherlands)	15:40 CET
	POLYBIOSKIN – HIGH PERFORMANCE FUNCTIONAL BIO-BASED POLYMERS FOR SKIN-CONTACT PRODUCTS IN BIOMEDICAL, COSMETIC AND SANITARY INDUSTRY Simona Neri, IRIS Technology (Spain)	16:00 CET
	FINAL DISCUSSION	16:20 CET
Bio-based I	Adustries onsortium	Contact Data protection regulation

Figure 19: MS8 – Programm of the Workshop on Bio-Based Polymers

For dissemination purposes, an event banner was created by the nova-Institute's graphic department as can be seen in the following figure.

	AFTERL!FE
Statements of the local division of the loca	BBI WORKSHOP ON BIO-BASED POLYMERS
	29th March 2021 – 13:00 CET – online – free registration www.afterlife-project.eu/bbi-workshop-2021
the second second	
This project has received funding from the Bio Based industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under guart agreement No 745/37.	BBJ Bio-based Industries Consortium

Figure 20: MS8 – Event banner

The registration page for the Zoom webinar was also customised using the event banner and a matching background colour:

Figure 21: MS8 – Screenshot of customised registration page

279 participants registered for the event and at least 200 participated. A discussion developed at the after the last presentation. The participants were interested in receiving the video recording of the event and the presentation slides. All registrants were informed as soon as the material was uploaded to the AFTERLIFE website where it is still available (www.afterlife-project.eu/bbi-workshop-2021).

Table 4: Visited events during the project period				
Partner	Title	Date	Place	
СТС	Poster in VIII International Symposium on	09.05.	Auditorio Victor Villegas	
Spain	Food Technologies. AFTERLIFE project: an	2017	Murcia, ES	
	integrated solution for the recovery and			
	conversion of relevant fractions from wastewater			
CSIC	Oral presentation by A. Prieto "Convirtiendo	24.10.	Gijon, ES	
CSIC	la basura en bioplástico, una apuesta	2017	Gij01, E3	
	sostenible" (in English: Converting waste into	2017		
	bioplastics, a sustainable bet)" at			
	http://jointcongress2017.com/ (spanish			
	satellite event)			
EggPlan	Talk at Ecomondo (Green Technologies Expo),	08.11.	Rimini, IT	
t	AFTERLIFE project: a zero-waste and circular	2017		
	economy approach for the recovery and			
	valorisation of the relevant fractions from			
	wastewater			
EggPlan	AFTERLIFE booth at the 2107 BBI Stakeholder	06.12.	Brussels, BE	
t	Forum	2017		
Eggplan	BBI Stakeholder forum	07.12.	Brussels, BE	
t/nova nova	Biocomposites conference Cologne	2017 07.12.	Cologne, DE	
nova	Biocomposites comerence cologne	2017	Cologile, DL	
Hendrik	European Bioplastics Conference	28.12.	Berlin, DE	
Waege		2017		
man,				
BBEPP				
CSIC	Wastes as feed-stocks for bio-based polymer	12.03.	Havana, CU	
	production	2018		
nova	Project flyer introduced in 6th CO2	15.03.	Cologne, DE	
	conference	2018		
nova	Project flyer introduced in 11th Bio-based	15.04.	Cologne, DE	
	material conference	2018		
nova	Project flyer introduced in 15th International	12.06.	Cologne, DE	
	Conference of the	2018		
	European Industrial Hemp Association	25.00	Ouisda FC	
CSIC	"Una visión actualizada de la producción de	25.06.	Oviedo, ES	
	bioplásticos de origen bacteriano" (in English:	2018		

4.3.5 Visits of conferences, workshops and other events

	An actual overview on the production of		
	bioplastics from bacterial origin)		
nova	Project flyer distributed in the fair	10.09.	Stuttgart, DE
110 Va	'Composites Europe'	2018	
Innoven	World Water Congress	16.09.	Tokyo,JP
mnoven		2018	100,55
201/2	Project flyer introduced in 1st Revolution in	01.10.	Cologne, DE
nova	Food and Biomass Production (REFAB)	2018	
	conference	2010	
CSIC		21.10.	Politing CN
CSIC	Puzzling out the PHA machinery in the model bacterium Pseudomonas putida KT2440	2018	Beijing, CN
	· · ·	-	
CSIC	"Convirtiendo la basura en bioplástico, una	24.10.	Gijon, ES
 	apuesta sostenible" (in English: Converting	2018	
	waste into bioplastics, a sustainable bet).	00.44	
CSIC	Project flyer introduced at the 3rd European	08.11.	Rimini, IT
	Nutrient event	2018	
NOVA	7th Conference on Carbon Dioxide as	19.03.	Cologne, Germany
	Feedstock for Fuels, Chemistry and Polymers	2019	
CSIC	Chemplast Congress	01.05.	Spain
		2019	
Lureder	Talk at University of Konstanz	01.05.	Konstanz, Germany
ra		2019	
CELABO	International Conferences on ULB Centre	01.05.	Gosselies, Belgium
R	Point in Gosselies	2019	
CSIC	Frontiers in Biomedical Polymers; 13th	01.05.	Spain
	International Symposium.	2019	
NOVA	12th International conference on Bio- based	15.05.	Cologne, Germany
	Materials	2019	
CSIC	XIII Congreso Anual de Biotecnología	01.06.	Spain
	Universidad CEU	2019	
CSIC	2nd Minisymposium of the GRK1708-	01.06.	Germany
	Bacterial Storage Compounds	2019	
CSIC	Expoquimica BIO	01.06.	Spain
		2019	
Innoven	7th International Conference on Sustainable	01.07.	Greece
	Solid Waste Management (HERAKLION20199	2019	
CSIC	10th European Symposium on Biopolymers	01.09.	Straubing, Germany
	2019 (ESBP-2019)	2019	
NOVAID	Noite Europeia dos Investigadores 2018-2019	01.09.	Portugal
	/ European Researchers Night [EN]	2019	

NOVAID	IWARR2019 - 3RD IWA Resource Revocery	01.09.	Italy
	Conference	2019	
CSIC	4th International Symposium on Bacterial	01.10.	Portugal
	Nanocellulose (ISBNC-2019)	2019	
NOVAID	Caminho da Inovação	01.10.	Portugal
		2019	
nova	8th Biocomposites Conference	01.11.	Cologne, DE
		2019	
CSIC	Moe Jam Science	01.11.	Spain
		2019	
IDENER	Conference: IWA Resources Recovery	01.11.	Italy
		2019	
IDENER	BBI JU Stakeholder Forum	01.12.	Belgium
		2019	
CSIC	Producción de bioplásticosde origen	01.01.	Madrid, Spain
	bacteriano	2020	
CSIC	Conference "Productos Biotecnológicos	01.05.	Columbia
	Colombia útiles para el humano y la Industria"	2020	
CSIC	From plastics to policy: How can we improve	07.05.	internet webinar hosted by the
	the performance of food packaging? Part 2:	2020	RefuCoat H2020 BBI-JU project
	The technology behind bio-plastics (with Auxi		
	Prieto; CIB)		
CSIC	Desarrollo biotecnológico de polímeros (by	13.05.	online workshop of
	Auxi Prieto, CIB)	2020	Universidad Colegio Mayor de
			Cundinamarca (Colombia)
			Facultad Ciencias de la Salud,
			Programa Bacteriología y
			Laboratorio Clínico
CSIC	PHA production from industrial waste	09.10.	AFTERLIFE project Stakeholder
	streams as part of sustainable plastics	2020	workshop; https://afterlife-
	production towards a circular plastics		project.eu/stakeholder/home
	economy (by Oliver Drzyzga, CIB)		
CSIC	La sostenibilidad de plásticos (by A. Prieto,	12.11.	Madrids Week of Science with
	CIB)	2020	CSIC; 18:00-19:30)
			https://www.cib.csic.es/news/
			outreach/cib-participates-
			new-edition-science-week-
			2020
CSIC	Member discussion of the Plastics Circularity	13.11.	videoconference of PCM
	Multiplier initiative (with A. Prieto presenting	2020	members and guests

	the SusPlast platform and various EU projects		
	including AFTERLIFE)		
CSIC	Revalorización de aguas residuales para la	01.12.	Workshop at final meeting of
	producción de bioplásticos (by A. Prieto, CIB)	2020	BactiWater EU project
CSIC	A holistic view of the bio-based plastic	11.12.	CICbioGUNE Seminar Series
	production (by A. Prieto, CIB)	2020	(online event);
			https://www.cicbiogune.es/ac tivities
nova	BBI Workshop on Bio-Based Polymers	29.03.	Zoom
		2021	
CSIC	Strategies for improving the production of	26.04.	online Symposium on
	polyhydroxyalkanoates from industrial	2021	Biomaterials, Fuels and
	wastewater by Cupriavidus necator H16 (by		Chemicals (SBFC-2021);
	Natalia Hernández, CIB-CSIC)		https://www.simbhq.org/sbfc ,
2010	Renewable Materials Conference 2021,	18.05.	/ Online
nova	presented AFTERLIFE in the conference	2021	Omme
	manual	2021	
NOVAID	IWA EcoSTP 2021: PHA Production Using	21.06.	Online Oral Presentation
	Fermented Wastewater From A Sweets	2021	
	Manufacturing Industry Rich In Lactate And		
	Ethanol		
NOVAID	IWA EcoSTP 2021: Effect of a Substrate Shift	21.06.	Online Poster Presentation
	in the Accumulation Reactor of a Three-Stage	2021	
	PHA Production Process by a Mixed Microbial		
	Culture	06.07	Con Loronzo do El Esserial
CSIC	Oral presentation Auxi Prieto at Summer School: "Redes de colaboración público-	06.07. 2021	San Lorenzo de El Escorial, Spain
	privada para investigación estratégica en	2021	Spain
	problemas globales (engl.: Public-private		
	collaboration networks for strategic research		
	on global problems)		
CTNC	Collaboration between CTAgua Uruguay and	08.10.	online
	CTNC Spain	2021	
CSIC	Science and Technology Week of CSIC 2021:	02.11.	CIB-CSIC, Madrid, Spain
	"Bacterial polymers: let's give our planet a	2021	
	break!" (with Auxi Prieto)		

4.3.6 Other special events

- AFTERLIFE was exhibited during the BBI JU Stakeholder Forum 2017 and 2019 and at the European Bioplastics Conference 2019.
- The third general assembly and first exploitation workshop was hosted by CSIC in their building located in Madrid in November 2019.
- A whole page ad was published in the conference journal of the Renewable Materials Conference organised by the nova-Institute in 2021. The ad is shown in the following figure.

ADVANCED FILTRATION TECHNOLOGIES FOR THE RECOVERY AND LATER CONVERSION OF RELEVANT FRACTIONS FROM WASTEWATER

Figure 22: Renewable Materials Conference journal ad 2021

4.4 Publications

	Table 5: Scientific publications				
Num -ber	Title	Authors	Publication	Journal	DOI
1	About how to capture and exploit the CO ₂ surplus that nature, per se, is not capable of fixing	Manuel S. Godoy; Beatrice Mongili; Debora Fino; M. Auxiliadora Prieto	2017	Microbial biotechnology	10.1111 /1751- 7915.12 805
2	Improvement and Development of Innovative Purification Techniques of Biopolymers Recovered from Fermentative Broth	Anja Lauder	2019	Master's Thesis	
3	Membrane-based conceptual design of reuse water production from candy factory wastewater	Kyllönen, Hanna; Heikkinen, Juha; Ceras, Javier; Fernandez, Claudio; Porc, Olaf; Grönroos, Antti	2021	Water Science & Technology	10.2166 /wst.20 21.326
4	When microbial biotechnology meets material engineering	Ana M. Hernández- Arriaga; Cristina Campano; Virginia Rivero- Buceta; M. Auxiliadora Prieto	2021	Microbial biotechnology	10.1111 /1751- 7915.13 975

4.5 Press releases and articles

- On 24 November, 2017, the first press release about AFTERLIFE was published on <u>www.cib.csic.es/news/research/kick-meeting-afterlife-bio-based-industries-project</u>.
- On 30 November 2017, the an article and press release about AFTERLIFE were published on *Renewable Carbon News*: <u>www.renewable-carbon.eu/news/four-year-project-to-develop-an-</u> <u>integrated-solution-for-the-recovery-and-conversion-of-relevant-fractions-from-wastewater-</u> <u>to-make-natural-additives-and-bioplastics</u>
- In December 2017, an article about AFTERLIFE was published in CTC ALIMENTACIÓN (www.afterlife-project.eu/wp-content/uploads/2019/02/Afterlife-CTC-magazine-December-2017.pdf)
- On 27 July 2018, an article called "Recovery and Valorisation of Wastewater Fractions for a Circular Economy – AFTERLIFE" was published in *BEsustainable* <u>www.besustainablemagazine.com/cms2/afterlife-recovery-and-valorisation-of-wastewater-</u> <u>fractions-in-the-name-of-circular-economy</u>
- On 29 April 2019, an article called "Solution for waste water in bioplastics and food additives" about the AFTERLIFE project was published by the EC: <u>www.ec.europa.eu/research-and-innovation/en/projects/success-stories/all/solution-waste-water-bioplastics-and-food-additives</u>
- In July 2019, a comprehensive article about the AFTERLIFE project called "Caracterización de las aguas residuales de las empresas españolas socias del proyecto AFTERLIFE" was published in CTC ALIMENTACIÓN (<u>www.afterlife-project.eu/wp-content/uploads/2019/09/CTC-Alimentación-70_18-20.pdf</u>)
- On 24 February 2021, an article and press release were published on *Renewable Carbon News* to promote the expert survey on the socio-economic impact of the biotechnological AFTERLIFE process (www.renewable-carbon.eu/news/join-our-expert-survey-and-evaluate-the-newlydeveloped-afterlife-process-for-the-extraction-of-value-added-products-from-waste-water).
- On 1 March 2021, another article and press release were published on *Renewable Carbon News* (www.renewable-carbon.eu/news/bbi-workshop-on-bio-based-polymers-on-29-march-2021). Their purpose was the dissemination of the MS8 BBI Workshop on Bio-Based Polymers. It includes an illustrated description for all of the seven BBI JU projects and features the URLs of the seven project websites (Figure 23).
- The final press release will be published in March 2022 and will include details about the project results. It will cover:
 - \circ ~ The AFTERLIFE Pilot Plants deployed and operated at BBEU facilities in Belgium
 - AFTERLIFE end products (foods and plastic goods)
 - The results of the socio-economic assessment

Deliverable 8.6 Dissemination and exploitation activities

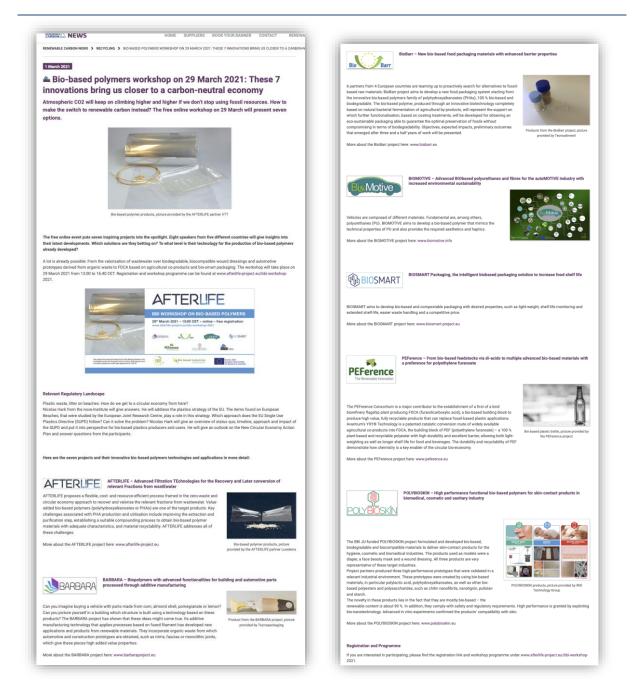


Figure 23: Article on MS8 event

4.6 Social media

Social media was used to disseminate project details, results and events. With every press release or article, a LinkedIn and Twitter posting was created. All known project partners, the funding organisations and stakeholders with social media accounts were tagged to increase the range of the postings.

4.7 Dissemination material

The following dissemination material was developed in the beginning of the project and updated according to changes in the consortium and the sponsors guidelines.

4.7.1 Project identity

The following figure shows the AFTERLIFE project logo:

The following figure is showing the colours chosen for the AFTERLIFE projects identity.

4.7.2 D8.3 – Leaflet

The AFTERLIFE Leaflets are attached as Annex I and II.

4.7.3 Roll-up

The AFTERLIFE Roll-up is attached as Annex III.

4.7.4 D8.4 – Videos

• 22 July 2019, "Renewable innovation from wastewater treatment – Discover the EU project AFTERLIFE": www.youtube.com/watch?v=eglUtwdFQMA&feature=emb_imp_woyt \Rightarrow 1,013 views

- 5 August 2019, "European SMEs finding a new way to valorise industrial wastewater AFTERLIFE": <u>www.youtube.com/watch?v=Q5F6kdxrK-Q</u>
 - \Rightarrow 192 views

4.7.5 Project group: Value Creation from Wastewater

The project group "Value Creation from Wastewater" was formed with the help of the Horizon 2020 booster services, especially the team from Trust-IT Services. Together, Trust-IT and the five projects created the following dissemination material:

- Flyer: <u>www.afterlife-project.eu/wp-</u> <u>content/uploads/2021/11/hrb_afterlife_flyer_a4_nov2021_final.pdf</u>
- Video: <u>www.youtube.com/watch?v=IdBGbUI_HC4</u>
- A joint web page

4.8 Dissemination outlook

The AFTERLIFE website will stay online for 5 more years. The publishable material can still be downloaded from the website.

AFTERLIFE partners can still upload their publications that are based on research from this project to the AFTERLIFE zenodo community: <u>www.zenodo.org/communities/745737</u>

All publications that were published within the AFTERLIFE project duration will be included on the EC portal, the AFTERLIFE website and the AFTERLIFE zenodo community.

The web page created by the project group "Value Creation from Wastewater" that was formed with the help of the Horizon 2020 booster services, especially the team from Trust-IT Services, will be implemented in the AFTERLIFE website.

5 Exploitation roadmap

5.1 List of Key Exploitable Results (KERs)

The initial list of KERs has been evolved during the project. Such an update gave, as a result, Table 7.

ID	KER description	Responsible partner
KER 1	Multidisciplinary design optimisation (MDO) implementation	IDE
KER 2	PHB production scaling-up with an evolved R. eutropha strain	CSIC
KER 3	Integrated waste and wastewater conversion into VFA	INN
KER 4	Development of a cost-effective cascade of filtration units	VTT
KER 5	Optimised PHA production from food wastewater	NID
KER 6	Development of methodologies for the processing of biopolymers into thermoplastics	LUR
KER 7	Development of processes for the extraction of aminoacids	LUR
KER 8	Development of process for FOG removal	LUR
KER 9	Development of blown extrusion process	MIP
KER 10	Recycling process for PHA-based bioplastics	MIP

In the following section 5.2 the characterisation, risks, and the exploitation roadmap have been described for each KER. The description of the KER9 and KER10 has not been included due to the lack of enough experimental information due to the poor performance in the blown extrusion process and the impossibility to produce the target plastic goods for their recycling. Similarly, KER2 has not been included due to its similarity with KER5.

5.2 KER1: Multidisciplinary design optimisation (MDO) implementation

5.2.1 Characterisation of KER

	Table 7. Description of KERI
Multidisciplina	ary design optimisation (MDO) implementation
Problem	Applying new technologies in existing processes or industrial landscapes
	has significant barriers due to the uncertainty of a successful
	implementation. This is a problem for the industries that need
	modernisation in the technologies they use to reach sustainable
	operations and products. Other potential clients are the technology
	developers, which can use the tool to prove the feasibility and advantages
	of technology implementation and support their engineering work.
Alternative	Commercial process simulation tools can be used to foresee the
solution	performance and potential adaptation of the technology for a successful

Table 7. Description of KER1

	implementation. However, the current commercial process simulators are
	not focused on biotechnological processes (they are mainly oriented to the
	chemical industry), or they have not developed advanced optimisation
	functionalities.
Unique Selling	The proposed tool will allow to test the suitability of the technology and
Point USP - Unique	quantify the potential economic and environmental advantages before its
Value Proposition	implementation. Specific and detailed models have been developed for the
	bioconversion processes in the AFTERLIFE scheme to ensure reliable
	results. It will also support the engineering works by calculating the
	optimal process parameters for each specific case.
Description	Development of a process simulation software with a focus on
	biotechnological operations. It includes the development of the
	mathematical modelling and optimisation strategy behind and of user
	interface and future extensions (i.e., the inclusion of additional
	technologies)
"Market" – Target	European bio-based industry
market	, ,
"Market" – Early	Food industries, PHA producers, technology developers (i.e., SMEs or
Adopters	RTOs)
"Market" -	Other developers of process simulation tools (ASPEN, SUPREPRO)
Competitors	
-	
Go to Market – Use model	Provision of a service/Software Licensing
Go to Market -	2 years
Timing	
Go to Market – IPR	Model and software development: IDENER
Background	Development of bioprocess technology: VTT, CELABOR, LUREDERRA,
	INNOVEN, CSIC, NID, BBEPP
Go to Market – IPR	Virtual plant (model) of the AFTERLIFE processes: IDENER
Foreground	AFTERLIFE technologies developed and validated: VTT, CELABOR,
	LUREDERRA, INNOVEN, CSIC, NID, BBEPP

AFTERL!FE

Table 8. KER1's Exploitation route (how the KER will be further exploited)				
	KER's Exploitation route (how the KER will be further exploited)			
	Selected route	Implementing actor	Yes	
USE	Commercialisation: <i>deployment</i> of a novel	One partner ¹		
	product/service (offered to the target markets)	A group of partners ²	Х	
	Contract research (new contracts signed by the	A partner		
	research group with external clients)	A group of partners		
DIRECT	A new research project (<i>application to public funded</i>	A partner		
IRE	research programmes)	A group of partners		
õ	Implementation of a new university – course	A partner		
	(Note that a training course is a service)	A group of partners		
		A new partnership		
	Assignment of the IPR	A partner		
		A group of partners		
USE	Licensing of the IPR	A partner		
		A group of partners		
CT	Development of a new legislation/standard	A partner		
RE		A group of partners		
INDIRECT	Spin- off	A partner		
		A group of partners		
		By assignment		
		By licensing		
	Other (<i>please describe</i>)			

Table 9: Exploitation roadmap of KER1

Exploitation roadmap		
Actions	Revision of the exploitation plan and business plan development	
	Discussions with partners about IPR management and signature of agreements	
Roles Revision of the exploitation plan and business plan development: IDENE		
	subcontracted services	
	Discussions with partners about IPR management and signature of agreements:	
	all involved partners	
Milestones	Clear IPR management strategy: 6 months after the end of the project	
	Release of the first version of the software: 1 year after the end of the project	
Financials	Is External services (IPR, business plan development, legal): 3 k€	
Costs	Software development: 16 k€	
RevenuesLicensing (with technical support) 1 year: 3 k€/license		
	Services providing (simulation of new units and scenarios): 5-10 k€/service	
	Revenues after 1 year: 0 €	
	Revenues after 3 years: 50 k€	
Other	er Own resources and other project grants	
sources of		
coverage		
Impact in 3-	Conversion of bio-based industry into a sustainable sector embedded in circular	
year time	economy. Reduction of waste generation and of water consumption	

¹ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

² Provide the names of the partners

5.2.2 KER risk assessment map

Figure 26: Priority map of KER1 – with risk numbers

Table 10. Summarising risks table of KER1

Summarising Risk	s Table
Number of "No Action" Risks	1
Number of "Control" Risks	4
Number of "Action" Risks	1
Number of "Warning" Risks	0
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	0
Number of Risks Between Action & Warning	0
Number of Risks Between No Action & Warning	0
Number of Risks Between Control & Action	

5.3 KER3: Integrated waste and wastewater conversion into VFA

5.3.1 Characterisation of KER

Table 11. Description of KER3

Integrated waste and wastewater conversion into VFA		
Problem	Wastewater treatment is an energy-intensive process that produces a high amount of sludge with a high cost for disposal. Each year a huge amount of wastewater by food industries is generated (fruit processing, cheese manufacturing and sweets manufacturing in the Afterlife contest). Also, the need for renewable and innovative plastic materials is more and more important.	
Alternative Wastewater could be treated by conventional activated sludge proc solution which is not energy efficient, or by the disposal as liquid waste thro expensive fee.		
Unique Selling Point USP - Unique Value Proposition UVP	Integrated anaerobic process, such as acidogenic fermentation or biogas production, allows the valorisation of organic matter contained in the wastewater into bio-based building blocks useful for the chemical industry (e.g., volatile fatty acids) or biogas for the on-site production of renewable energy (heat and/or electricity) and potential upgrading of biogas to biomethane.	
Description	This solution optimises the existing wastewater treatment by the production of volatile fatty acids and biogas from food-industry wastewaters employing biological processes, thus aiming the valorisation of the organic matter into high added-value products. The production is therefore eco-friendly, avoiding the use of petrol-based materials or substrates.	
"Market" – Target market	This technology has been already applied in the municipal sector, and full- scale cases are operating in 2 Italian wastewater treatment plants. The same technology could be exploited in all industries of agro, food, the paper sector with waste and wastewater. The same technologies could also be applied for the treatment of the organic fraction of municipal solid waste (OFMSW).	

"Market" – Early Adopters	Other customers could be private and public companies involved in the management of municipal waste and wastewater. Water utilities are interesting in these technologies because of the on-site production of suitable carbon sources to enhance the biological nutrients removal.
"Market" - Competitors	Engineering company that are offering services and consulting aiming resource recovery from waste and wastewater.
Go to Market – Use model	Innoven srl is a technology provider. It can offer the know-how and support to construction companies to realise the process. Innoven can give the support on the start-up and long-term monitoring assistance of the biological process.
Go to Market - Timing	The acidogenic fermentation was already applied in at least 2 full scale plants, while other 2 executive design were carried for next realisation withing 2 years of timing. The recovery and purification of VFAs will be a further upgrading of the acidogenic fermentation but will require around 10 years (estimated) before to have the first industrial prototype.
Go to Market – IPR Background	Development of anaerobic fermentation and digestion of wastes
Go to Market – IPR Foreground	The acidogenic fermentation could be integrated with other technology validated during the AFTERLIFE project. The downstream of the VFAs as well as the PHAs production from aerobic mixed cultures.

Table 12. KER3's Exploitation route

	KER's Exploitation route (how the	KER will be further exp	loited)
	Selected route	Implementing actor	Yes
	Commercialisation: deployment of a novel	One partner ³	
	product/service (offered to the target markets)	A group of partners ⁴	X (JAKE, CIT, HER, BBEU)
USE	Contract research (new contracts signed by	A partner	
	the research group with external clients)	A group of partners	
DIRECT	A new research project (application to public	A partner	
DIR	funded research programmes)	A group of partners	
	Implementation of a new university – course	A partner	
	(Note that a training course is a service)	A group of partners	
		A new partnership	
	Assignment of the IPR	A partner	
		A group of partners	
USE	Licensing of the IPR	A partner	
		A group of partners	
INDIRECT	Development of a new legislation/standard	A partner	
		A group of partners	
	Spin- off	A partner	
		A group of partners	
		By assignment	

³ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

⁴ Provide the names of the partners

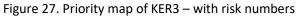

	By licensing	
Other (<i>please describe</i>)		

Table 13. Exploitation roadmap of KER3

Exploitation Roadmap		
Actions	Feasibility study and cost/benefit analyses for the implementation of acidogenic fermentation and biogas production within the industries involved in the project.	
Roles	VTT could be involved in the recovery and purification of the VFAs produced by the acidogenic fermentation. NID could be involved in the PHA production using VFAs produced and purified.	
Milestones Not determined		
Financials	Not determined	
Costs		
Revenues Not determined		
Other sources of	Application to other EU Projects to develop the technology and possible	
coverage	other substrates/by-products to be used for this application.	
Impact in 3-year time	This solution optimises the existing wastewater treatment by the production of high-value intermediates/products by using food-industry wastewaters, thus aims the valorisation of waste into high added-value products. The production is therefore eco-friendly, avoiding the use of petrol-based materials or substrates.	

5.3.2 KER risk assessment map

Table 14. Summarising risks table of KER3

Summarising Risks	Table
Number of "No Action" Risks	0
Number of "Control" Risks	4
Number of "Action" Risks	1
Number of "Warning" Risks	1
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	0
Number of Risks Between Action & Warning	0
Number of Risks Between No Action & Warning	0
Number of Risks Between Control & Action	

5.4 KER4: Development of a cost-effective cascade of filtration units

5.4.1 Characterisation of KER

Table 15. Description of KER4

Development of a cost-effective cascade of filtration units		
Problem	Limits for wastewater discharge create the need for purification. Valuables in wastewater cause pure water and material loss when discharging without recovery. A sufficient good concept to recover value from wastewater of the food industry is not available for the companies.	
Alternative solution	Wastewater goes to wastewater treatment plants without recovery of water and valuables.	
Unique Selling Point USP - Unique Value Proposition UVP	Water for reuse and material recovery can be realised with the developed membrane-based concepts. The development of a cost-effective cascade of membrane filtration units for the separation and concentration of four different wastewaters were developed. The concepts can be multiplied for other similar types of wastewaters. Similar concepts do not exist yet in the market.	
Description	Cost-effective cascade of membrane filtration units for the separation and concentration of wastewater for water reuse and valuables recovery.	
"Market" – Target market	 Water/wastewater market; purification, reuse, valuables recovery Customer segment is water-intensive process industry 	
"Market" – Early Adopters	Finnish food industry (dairy, brewery, candy)	
"Market" - Competitors	Companies who can offer concept with equipment (e.g., Veolia, Suez, GE). However, before offering, they also need separation concept development, which is naturally done by research institutes having suitable knowledge. Devices are available for customer purchase (however, not necessarily the best one).	

Go to Market – Use	Purchase trademark for the concepts, publish development in scientific articles, direct industrial use.
model	
Go to Market -	Publication is accepted, trademark purchase is under consideration, concept
Timing	will be marketed to Finnish companies in near future.
Go to Market – IPR	The knowledge needed for concept development is in the public domain.
Background	
Go to Market – IPR	It is agreed in the consortium that the concept will not be patented.
Foreground	

Table 16. KER4's Exploitation route

	KER's Exploitation route (how the KER w	vill be further exploi	ted)
	Selected route	Implementing actor	Yes
	Commercialisation: deployment of a novel	One partner ⁵	х
	product/service (offered to the target markets)	A group of partners ⁶	
щ	Contract research (new contracts signed by the	A partner	
USE	research group with external clients)	A group of partners	
CT .	A new research project (application to public funded	A partner	
DIRECT	research programmes)	A group of partners	
ä	Implementation of a new university – course	A partner	
	(Note that a training course is a service)	A group of partners	
		A new partnership	
	Assignment of the IPR	A partner	
		A group of partners	
USE	Licensing of the IPR	A partner	
		A group of partners	
CT	Development of a new legislation/standard	A partner x	
INDIRECT		A group of partners	
	Spin- off	A partner	
		A group of partners	
		By assignment	
		By licensing	
	Other (<i>please describe</i>)		

Table 17. Exploitation roadmap of KER4

Exploitation roadmap		
Actions	Purchase trademark for the concepts, marketing for direct industrial use	
Roles	Realised by VTT	

⁵ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

⁶ Provide the names of the partners

Milestones	Trademark procedure clarified Q3 2022	
	Trademark proposal submitted Q4 2022	
	Direct industrial use marketed to Finnish food industry Q4 2022	
Financials	Not determined	
Costs		
Revenues	Not determined	
Other sources of	TRL high enough for KER	
coverage		
Impact in 3-year	New business in circular economy, purer environment, savings in raw	
time	materials	

5.4.2 KER risk assessment map

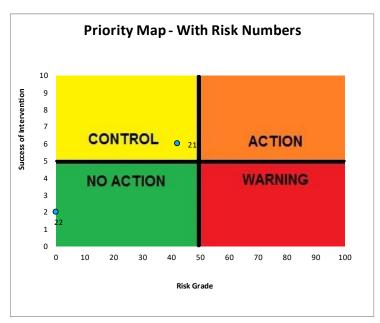


Figure 28. Priority map of KER4 – with risk numbers

Table 18	. Summarising	risks	table	of KER4
----------	---------------	-------	-------	---------

Summarising Risks Table		
Number of "No Action" Risks	4	
Number of "Control" Risks	1	
Number of "Action" Risks	0	
Number of "Warning" Risks	0	
Number of Risks in the middle of everything	0	
Number of Risks Between Control & No Action	0	
Number of Risks Between Action & Warning	0	
Number of Risks Between No Action & Warning	0	

5.5 KER5: Optimised PHA production from food wastewater

5.5.1 Characterisation of KER

Table 19. Description of KER5

Optimised PHA pr	oduction from food wastewater
Problem	Generation of a relevant volume of wastewater by food processing industries like fruit processing, cheese manufacturing and sweets manufacturing, that must be treated before discharge. On the other hand, there is a need for biodegradable plastic goods for packaging and agriculture applications. The organic matter present in the wastewater of these three water-intensive food processing industries can be converted into a high value-added biopolymer, namely PHA. For that, PHA production using mixed microbial cultures must be optimised.
Alternative solution	Wastewater from food processing industry is treated by biological methods for the removal of organic matter and nutrients without product valorisation.
Unique Selling Point USP - Unique Value Proposition UVP	Conversion of the organic matter coming from wastewater into a high value-added PHA biopolymer using a mixed microbial culture. The PHA production is optimised for a high biomass content in the selection bioreactor, high PHA content in the microbial cells and high overall volumetric productivity. Valorisation of wastewater into a high added- value product, contributing to the circular economy concept.
Description	The low value-added organic residues, after being converted into volatile fatty acids (VFA) by anaerobic fermentation, are used for the selection of a mixed microbial culture with high PHA accumulation capacity. The selected bacterial consortium can produce PHA from feedstocks with different origins and different fermentation product profiles than the ones used for culture selection. High PHA productivities can be attained.
"Market" – Target market	Food industry wastewater producers and/or PHA producing companies.
"Market" – Early Adopters	PHA producers interested in using wastewater as a cheaper feedstock. Due to issues related to material flow, the possibility of installing the PHA production units at the food industry facilities should be considered. This scenario should be considered when developing the business model.
"Market" - Competitors	Producers of biodegradable polymers, including PHA. The weaknesses are related to the use of pure cultures for PHA production, which can be less robust in the presence of feedstocks with variable composition.
Go to Market – Use model	Through licence agreement and publications.
Go to Market - Timing	1 year
Go to Market – IPR Background	NID has achieved a TRL-4 (development at bench-scale) in the PHA production by bacteria consortium using different industrial residues as carbon source. There is no previous patent.

	The technology was developed by NID. There is no need for technology agreement.
Go to Market – IPR NID technology can be used with the technology developed by Inn	
Foreground	For that, a joint ownership agreement will be necessary.

Table 20. KER5's Exploitation route

	KER's Exploitation route (how the KER w	ill be further exploi	ted)
	Selected route	Implementing actor	Yes
	Commercialisation: <i>deployment</i> of a novel	One partner ⁷	
	product/service (offered to the target markets)	A group of partners ⁸	
щ	Contract research (new contracts signed by the	A partner	
USE	research group with external clients)	A group of partners	
DIRECT	A new research project (application to public funded	A partner	
IRE	research programmes)	A group of partners	
	Implementation of a new university – course	A partner	
	(Note that a training course is a service)	A group of partners	
		A new partnership	
	Assignment of the IPR	A partner	
		A group of partners	
	Licensing of the IPR	A partner	Х
INSE.		A group of partners	X INNOVEN
ECT	Development of a new legislation/standard	A partner	
INDIRECT		A group of partners	
	Spin- off	A partner	
н		A group of partners	
		By assignment	
		By licensing	
	Other (<i>please describe</i>)		

Table 21. Exploitation roadmap of KER5

Exploitation Roadmap			
Actions	License the knowhow. To increase the TRL of the technology, NID will		
	apply for further research funding.		
Roles	Join the PHA production technology of NID with VFA production		
	technology of Innoven.		
Milestones	Accomplish the TRL5 of the technology in 6 months		
	Apply for further research funding to increase the TRL		
	Licence the technology		
Financials 6 months to accomplish TRL5: € 30,000.00			
Costs	1 year to increase the TRL: € 500,000.00		
Revenues	Technology Transfer Office (TTO) will help NID to licence the technology		
	and to define the revenues and eventual profits.		
Other sources of	f To further develop the technology and increase the TRL, NID will apply		
coverage	for another research project funding.		

⁷ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

⁸ Provide the names of the partners

Impact in 3-year time	Bring the technology to TRL7 to enable its licencing.	
	Valorisation of wastewater into a high added-value product, contributing	
	to the circular economy concept.	
	Advancement of the commercially established PHA production routes.	

5.5.2 KER risk assessment map

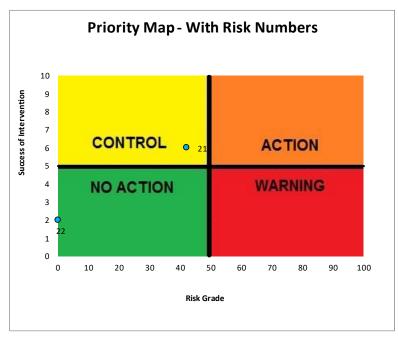


Figure 29. Priority map of KER5 – with risk numbers

Table 22. Summarising risks table of KER5

Summarising Risks Tal	ble
Number of "No Action" Risks	4
Number of "Control" Risks	1
Number of "Action" Risks	0
Number of "Warning" Risks	0
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	0
Number of Risks Between Action & Warning	0
Number of Risks Between No Action & Warning	0
Number of Risks Between Control & Action	0

5.6 KER6: Development of methodologies for the processing of biopolymers into thermoplastics

5.6.1 Characterisation of KER

Table 23. Description of KER6

Dovelopment of	methodologies for the processing	a of biopolymore into
thermoplastics	nethodologies for the processing	g of biopolymers into
Problem		
	Bioplastics produced with PHA have techni difficulty in thermoforming, low ductility, or means that the companies dedicated to its added value products such as their biode compete commercially with traditional hydrocarbons since they have properties tha for different commercial applications such as	low thermal resistance. This production, despite offering gradability, are not able to plastics produced from t make them more attractive packaging.
	At present, followed strategies for the comr	
	development of specific processes that allow the mixture of PHA with other polymers that properties of the resulting thermoplastic mate other polymers is the most widespread m thermoplastic materials. Among the polymer polymers originating from hydrocarbons, PP properties are obtained for industrial use degradation capacity lose; and biopolymers, the degradability intact and with which improv obtained.	can improve the mechanical erial. The mixture of PHA with nethod to make competitive rs used in these mixtures are or PVC, with which excellent but which make the plastic such as PLA, that maintains ved mechanical properties are
	Lurederra's under development method to	
Value Proposition UVP	materials also follows the PHA additivation commercial limitations. The additivation fol biopolymers that do not affect the degradabil as in other commercial formulations, but the study of the incorporation of inorganic nanoco or sepiolite. These compounds improve some of PHA: -Nanoclay: help to improve the thermal stabi -Sepiolite: improves the thermoforming of Ph	lowed by Lurederra includes ity of the final plastic material innovation, in this case, is the omposites such as nano clays of the commercial limitations ility of the PHA.
	The use of composites with nanoscale size he integration of the additive in the plastic matri additive used is reduced thanks to the great nanoparticles have. Furthermore, inorganic degradability of the final product and are r than biopolymers.	x. In addition, the quantity of ater specific surface that the materials do not affect the
	The result obtained by Lurederra is a product for the manufacture of thermoplastic materi mechanical characteristics are achieved that viable. Some of these mechanical characteris obtaining the following results:	als based on PHA with which t make their commercial use
	RESULTS OF MECHANICAL CHA	RACTERISATION

	Maximum slope (N/mm)	69.14137
	Breaking force (N)	108.61800
	Deformation to break (%)	2.30805
	Elongation to break (mm)	3.00047
	Deformation maximum by traction (mm/mm)	0.02344
"Market" – Target market	The target market is companies focused on the proc materials, especially those that work with bio materials, etc. and interested in productive system Some examples of companies in the sector are Arti	opolymers, degradable s in a circular economy.
"Market" – Early	Bioplastics or Futamura. Not identified yet	
Adopters		
"Market" - Competitors	Other technology centres or research organizat focused on or experience in the design of thermopl AIMPLAS Instituto Tecnológico del Plástico, AITIIF Fundación ANDALTEC I + D + i. These may have g out tests and characterisation, while Lurederra ha and experience in the field of nanoparticles as an i	astic materials, such as Centro Tecnológico or reater capacity to carry as extensive knowledge
Go to Market – Use model	Technology transfer	
Go to Market - Timing	During the next two years after the completic technological transfer of the results obtained to c said technology will be sought. If the results are s will be commercially exploited through the compar Lurederra collaborates closely).	companies interested in satisfactory, the results
Go to Market – IPR Background	Lurederra's IPR background according to the cor Development of methodologies for the conversion thermoplastic materials.	-
Go to Market – IPR Foreground	Lurederra has collaborate with Mi-Plast is the wo Then, agreements between these organisations w sense.	

Table 24.	KER6's	Exploitation	route
	110 0	Exploreation	10410

	KER's Exploitation route (how the KER w	vill be further exploited)
	Selected route	Implementing actor	Yes
	Commercialisation: deployment of a novel	One partner ⁹	
USE	product/service (offered to the target markets)	A group of partners ¹⁰	х
	Contract research (new contracts signed by the	A partner	
RECT	research group with external clients)	A group of partners	х
DIR	A new research project (application to public funded	A partner	
	research programmes)	A group of partners	х

 $^{^9}$ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

¹⁰ Provide the names of the partners

	Implementation of a new university – course	A partner
	(Note that a training course is a service)	A group of partners
		A new partnership
	Assignment of the IPR	A partner
		A group of partners
Щ	Licensing of the IPR	A partner
USE		A group of partners
CT	Development of a new legislation/standard	A partner
INDIRE		A group of partners
I	Spin- off	A partner
H		A group of partners
		By assignment
		By licensing
	Other (please describe)	

Exploitation Road	map
Actions	 -Carrying out a market study to define appropriate market prices -Search to identify the tests necessary for the validation of the properties of the product. -Star carrying out a scaling process to optimise the process on an industrial scale. For this, it will be valued the acquisition of a new extruder that will allow progress in the preparation of samples and scaling work will be assessed, which would mean about € 60,000.
Roles	Lurederra does not have partners for the exploitation of this KER, so for now all defined actions will be carried out by Lurederra, but conversations are being held with Mi-plast to be able to have it as a partner. In that case, Lurederra's role would be more to scale, optimise formulations, etc. While Mi-plast would focus on the part related to product validation.
Milestones	 -Validation of product properties with respect to current legislation: mechanical characterisation, degradation test, certification for contact with food -Obtaining a production protocol on an industrial scale. -Signing of agreements with companies for technology transfer.
Financials Costs	The main expenses will be personnel and consumables for research or the exploitation of results, which will mean around \in 50,000.
Revenues	The projected income and potential benefits are estimated at 200,000 \in per year.
Other sources of coverage	In addition to personal and material resources, Lurederra has a close collaboration with the TECNAN company, which could carry out larger- scale production and commercialisation of the technology developed.
Impact in 3-year time	Over the next 3 years it is expected that technology transfer agreements will be reached with different bioplastics producing companies, seeking estimated economic benefits. In addition, to carry out the exploitation tasks, new jobs will be created in Lurederra. In addition, the knowledge

I	
	acquired by Lurederra in the development of this solution will allow the
	carrying out of new research projects around bioplastics.
	After 3 years, with the most mature development, the commercialisation
	of the product developed directly through the company TECNAN (a
	company with which Lurederra collaborates very closely) will be studied.

5.6.2 KER risk assessment map

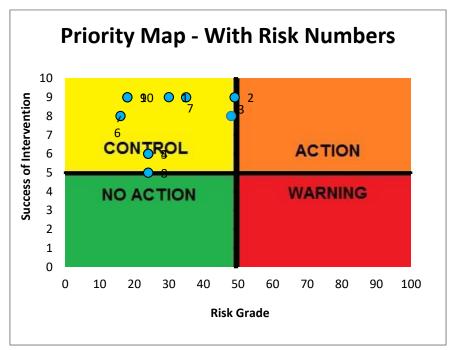


Figure 30. Priority map of KER6 – with risk numbers

Table 26. Summarising ri	isks table of KER6
--------------------------	--------------------

Summarising Risks	Table
Number of "No Action" Risks	0
Number of "Control" Risks	9
Number of "Action" Risks	0
Number of "Warning" Risks	0
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	1
Number of Risks Between Action & Warning	0
Number of Risks Between No Action & Warning	0
Number of Risks Between Control & Action	0

5.7 KER7: Development of processes for the extraction of aminoacids

5.7.1 Characterisation of KER

Table 27. Description of KER7

Dovolonmont of	mrssssss a	for the out	action of amin	opoido	
Development of	processes	for the extr		Uacius	
Problem	carried out us the one hand imply the neo	sing strong min d, this process cessary waste r tion of amino a	ds from wastes to re neral acids for the h implies the use of o management and, o cids, reducing the a	nydrolysis of prote corrosive substanc on the other hand,	eins. On ces that causes
Alternative solution			and thus the race	emisation of amino	o acids,
Unique Selling Point USP - Unique Value Proposition UVP Description	enzymatic hydrolysis is used. Lurederra has developed a hydrolysis method to obtain free amino acids using oxalic acid. It is a more environmentally friendly method since it does not involve corrosive substances and allows the amino acids to be separated from the acid easily by decanting them with calcium hydroxide in the form of calcium oxalate and their subsequent reuse. Furthermore, it makes it possible not to racemise amino acids, preserving their L form more economically than by using enzymatic hydrolysis. The developed process allows the hydrolysis of proteins to obtain free				
	hydrolysis, ai acid by decai	n amino acid c nting the oxalio	cid as an alternativ oncentrate is obtair c acid in the form c	ned after neutralis of calcium oxalate	sing the and its
	compounds fr In the tests c of the sample	rom the sample carried out thro	ughout the AFTERLI labor has been carrie	FE project, the hy	drolysis
	compounds fr In the tests c of the sample with the follow	rom the sample carried out thro supplied by Ce wing composition	ughout the AFTERLI labor has been carrie on:	FE project, the hy ed out, obtaining s	drolysis
	compounds fr In the tests of of the sample with the follow Ami	rom the sample carried out thro supplied by Ce wing composition	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L	FE project, the hy ed out, obtaining s	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp	rom the sample carried out thro supplied by Ce wing composition	ughout the AFTERLI labor has been carrie on:	FE project, the hy ed out, obtaining s	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8	FE project, the hy ed out, obtaining s -) (%) 7,7%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyc	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyc Hist	rom the sample carried out thro e supplied by Ce wing composition inoAcid artic Acid tamic Acid ine cine	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyc Hist Argi	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid tine cine	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyc Hist Argi	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid time tidine tidine eonine	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyc Hist Argi Thre	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid tine cine tidine inine eonine nine	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyd Hist Argi Thro Alar Prol	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid tine cine tidine inine eonine nine	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0 495,9	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1% ND	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyd Hist Argi Thro Alar Prol	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid time cine tidine inine eonine hine line	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0 495,9 180,0	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1% ND 9,2%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyd Hist Argi Thro Alar Prol Tyro Vali	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid time cine tidine inine eonine hine line	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0 495,9 180,0 453,4	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1% ND 9,2% 2,7%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyd Hist Argi Thro Alar Prol Tyro Vali	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid time cine cine cine cine cine cine cine cin	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0 495,9 180,0 453,4 260,6	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1% ND 9,2% 2,7% 1,8%	drolysis
	compounds fr In the tests of of the sample with the follow Ami Asp Glut Seri Glyd Hist Argi Thro Alar Prol Tyro Vali Met Cyst	rom the sample carried out thro supplied by Ce wing composition inoAcid artic Acid tamic Acid tamic Acid time cine cine cine cine cine cine cine cin	ughout the AFTERLI labor has been carrie on: Conc. AA (mg/L 1317,8 757,5 205,1 158,0 1698,5 108,8 503,0 495,9 180,0 453,4 260,6 220,4	FE project, the hy ed out, obtaining so -) (%) 7,7% 6,3% 2,6% 1,2% 3,4% 7,4% 21,1% ND 9,2% 2,7% 1,8% 3,3%	drolysis

	Phenylalanine	248,4	2,8%	
	Lysine	251,4	23,3%	
	Total	7457,4	100,0%	
	Essential AA	3665,6	62,8%	
"Market" – Target market	The target market are companies interested in implementing this alternative hydrolysis process to obtain free amino acids through the revalorisation of wastes. This involves companies from different sectors such as animal nutrition or sports nutrition. Some examples of these companies are: Daymsa (animal nutrition) and BFC (human and animal nutrition)			
"Market" – Early Adopters	Early adopters are those companies that market free amino acids and are interested in improving their extraction processes making it more environmentally friendly and improving the racemisation problem.			
"Market" - Competitors	Other technology centres or research organisations with departments focused on or experience in extraction and valorisation of nutritional interesting compounds, such as NEO ALGAE or AINIA.			
Go to Market – Use model	Technology transfer.			
Go to Market - Timing	During the next two years after the completion of the project, the technological transfer of the results obtained to companies interested in said technology will be sought.			
Go to Market – IPR Background	Although this activity was no was decided to carry it out had from previous projects i revalued.	due to the experience n which residues incl	e that Lurederra uding amino aci	already ds were
Go to Market – IPR Foreground	Based on the results obtain Lurederra hopes to obtain k participate in new research p	nowledge and experie		

Table 28. KER7's Exploitation route

	KER's Exploitation route (how the KER will be further exploited)		
	Selected route	Implementing actor	Yes
	Commercialisation: deployment of a novel	One partner ¹¹	
	product/service (offered to the target markets)	A group of partners ¹²	Х
щ	Contract research (new contracts signed by the	A partner	
SN	research group with external clients)	A group of partners	
L L	A new research project (application to public funded	A partner	
DIRE	research programmes)	A group of partners	
ā	Implementation of a new university – course	A partner	
	(Note that a training course is a service)	A group of partners	
		A new partnership	
ZI	Assignment of the IPR	A partner	
E C		A group of partners	

¹¹ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

¹² Provide the names of the partners

Licensing of the IPR	A partner
	A group of partners
Development of a new legislation/standard	A partner
	A group of partners
Spin- off	A partner
	A group of partners
	By assignment
	By licensing
Other (please describe)	

Table 29.	Exploitation roadma	ap of KER7
10516 25.	Exploreación roadina	

Exploitatio	n roadmap
Actions	-Carrying out a market study to define appropriate market prices.
	-Identify those requirements that the sample obtained of amino acids must meet
	to have industrial value and carry out the necessary optimisations in the process
	to adapt to them -Identify possible legal or administrative obstacles in the implementation of the
	process developed in the market.
	-Continue carrying out a scaling process to optimise the process on an industrial
	scale.
Roles	Lurederra does not have partners for the exploitation of this KER, so for now all
	defined actions will be carried out by Lurederra. However, CTC's advice is being
	counted on in the definition of requirements to be met by the mixtures of amino acids obtained by the process.
Milestones	-Obtaining a suitable market price for the process developed
Winestones	-Identify the requirements for the amino acid concentrates obtained in the process
	to be of commercial interest.
	-Identify the legal requirements that the process must meet.
-Definition of parameters on an industrial scale.	
Financials	The main expenses will be personnel and consumables for research or the
Costs	exploitation of results.
Revenues	The projected income and potential benefits are estimated at 70,000 \in per year.
Other	Not determined
sources of	
coverage	
Impact in 3- Over the next 3 years it is expected that technology transfer agreemen	
year time	reached with different companies, as Daymsa and BFC, seeking estimated
	economic benefits. In addition, to carry out the exploitation tasks, new jobs will
	be created in Lurederra. In addition, the knowledge acquired by Lurederra in the development of this solution will allow the carrying out of new research projects.
	acveropment of this solution will allow the carrying out of new research projects.

5.7.2 KER risk assessment map

Figure 31. Priority map of KER7 – with risk numbers

Summarising Risks	Table
Number of "No Action" Risks	1
Number of "Control" Risks	5
Number of "Action" Risks	
Number of "Warning" Risks	0
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	
Number of Risks Between Action & Warning	
Number of Risks Between No Action & Warning	
Number of Risks Between Control & Action	

5.8 KER8: Development of a process for FOG removal

5.8.1 Characterisation of KER

Table 31. Description of KER8

Development of process for FOG removal	
Problem	The need to separate FOGs (fats, oils and Grease) in the purification of industrial waters
Alternative solution	The main method used is flotation

Unique Selling Point	In Lurederra, the development of a method for separating FOG from water	
USP - Unique Value	has been carried out, focusing on an absorbent material capable of	
Proposition UVP	trapping these compounds. This separation method has as its main	
	advantage over flotation the possibility of working in continuous flow and	
	in less time and space (flotation requires large surface tanks to be able to	
	remove the fats that come to the surface). In addition, another of the main	
	advantages of the process is the ability to remove the FOG from the	
	absorbent by pressing it so that it can be reused.	
Description	The process is based on a porous rubber-based material that, through	
	nanotechnology, allows the FOG present in the water to be trapped. In the	
	preliminary tests carried out in the laboratory and in the absence of the	
	latest optimisations, percentages of FOG reduction of the wastewater	
	exceeding 50% have been achieved.	
"Market" – Target	Companies that carry out their own water purification. Especially those in	
market	the food sector. Also, companies and organisations are specifically	
	dedicated to water purification.	
"Market" – Early	Not identified yet	
Adopters		
"Market" -	Other technology centres or research organizations with departments	
Competitorsfocused on or experience on wastewater tratement as Centro de las Nue Tecnologías del Agua (Fundación CENTA) or Centro Tecnológico del A		
Go to Market – Use	Technology transfer.	
model		
Go to Market -	During the next two years after the completion of the project, the	
Timing	technological transfer of the results obtained to companies interested in	
	said technology will be sought.	
Go to Market – IPR	Lurederra's IPR background, according to the consortium agreement, is:	
Background	Know-how on wastewater treatment and new materials for separation and	
	purification (resins, adsorbents, etc.) Coating technology for anti-stick and	
	anti-fouling applications. Know how on polymers processing.	
Go to Market – IPR	Lurederra has collaborated with VTT in work related to this KER. Then,	
Foreground	agreements between this organisation will be established in this sense.	

Table 32. KER8's Exploitation route

	KER's Exploitation route (how the KER will be further exploited)		
Selected route		Implementing actor Y	Yes
	Commercialisation: deployment of a novel	One partner ¹³	
USE	product/service (offered to the target markets)	A group of partners ¹⁴	
	Contract research (new contracts signed by the	A partner	
DIRECT	research group with external clients)	A group of partners X	
ā	A new research project (application to public funded	A partner	
	research programmes)	A group of partners X	

¹³ Partners identifies the partners of the project receiving the ESS, not third parties that may be partner in the future.

¹⁴ Provide the names of the partners

Implementation of a new university – course	A partner	
(Note that a training course is a service)	A group of partners	
	A new partnership	

Exploitatio	n roadmap
Actions	 -Carrying out a market study to define appropriate market prices. -Identify possible legal or administrative obstacles in the implementation of the process developed in the market. -Continue carrying out a scaling process to optimise the process on an industrial scale.
Roles	Lurederra does not have partners for the exploitation of this KER, so for now all defined actions will be carried out by Lurederra.
Milestones	-Obtaining a suitable market price for the process developed -Identify the legal requirements that the process must meet. -Definition of parameters on an industrial scale.
Financials Costs	The main expenses will be personnel, consumables for research or the exploitation of results and the purchase or development of new devices, such as roller mill, that allow the material to be produced on a larger scale. that will mean around $60,000 \in$.
Revenues	The projected income and potential benefits are estimated at 80,000 \in per year.
Other sources of coverage	Not determined yet
Impact in 3- year time	Over the next 3 years it is expected that technology transfer agreements will be reached with different companies and organisations that carry out water purification processes that involve the separation of FOG, seeking estimated economic benefits. In addition, to carry out the exploitation tasks, new jobs will be created in Lurederra. In addition, the knowledge acquired by Lurederra in the development of this solution will allow the carrying out of new research projects. Furthermore, if the situation is favourable and market data make it possible, the creation of a spin of company could be considered for the exploitation and direct sale of absorbent material.

Table 33. Exploitation roadmap of KER8

5.8.2 KER risk assessment map

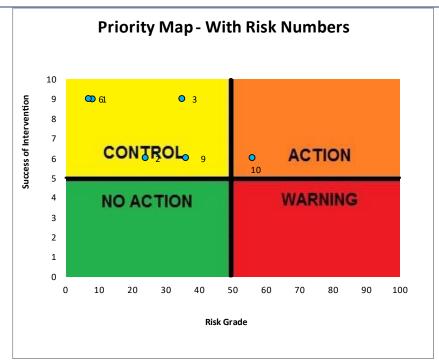


Figure 32. Priority map of KER8 – with risk numbers

Summarising Risks Table	
Number of "No Action" Risks	1
Number of "Control" Risks	9
Number of "Action" Risks	1
Number of "Warning" Risks	0
Number of Risks in the middle of everything	0
Number of Risks Between Control & No Action	0
Number of Risks Between Action & Warning	0
Number of Risks Between No Action & Warning	0
Number of Risks Between Control & Action	0

Table 34. Summarising risks table of KER8

6 AFTERLIFE Technology: Market analysis and exploitation model

Several discussions within the consortium and with the support of LC Innoconsult have drawn the following conclusions:

- AFTERLIFE target market will be, ultimately, the high-water demanding food industry
- The value proposition will be linked to the in-situ treatment of wastewater to produce clean wastewater that could be reused in the process
- The concentrated/sludge produced after the filtration step can be commercialised as a raw material to produce value-added products (mainly PHAs)
- For this, it is necessary the presence of actors able to convert the sludge into PHAs (i.e., biorefineries)
- The PHA technology developed in AFTERLIFE (by mixed or pure cultures) could be licensed to these companies able to make the conversion

According to these conclusions and going a step further than the exploitation analysis typically done at this TRL level, a preliminary business plan structure and exploitation model has been drafted considering the filtration technology developed in AFTERLIFE for water cleaning (KER4). Regarding PHA production technology, it has been compared with benchmarking PHA production technologies in techno-economic (deliverable D.7.4) and LCA (deliverable D.7.2). The social assessment has also considered the PHA-based products to determine their public acceptance (deliverable D.7.5). Potential improvements and steps forward to increase their competitiveness are described in these deliverables.

The wastewater from the food processing industry is generally pre-treated in-situ before (1) discharging into the sewage network or (2) being received by an authorised waste manager. These practices aim to deplete water before discharging into the water bodies but not the valorisation of the organic matter inside. In the same specific cases, part of the waste streams can be valorised (e.g., cheese whey). But it does not imply a recovery of clean water for the process, and it is made only for concentrate streams and not for the diluted streams from the project, which are the majority.

The common technology that is applied in water depuration is the active sludge process. This technology uses mixed bacterial cultures (sludges) to degrade the organic matter in the wastewater. It is an aerobic process (thus required air injection) that produces a significant amount of biological sludge, which should be treated. The main disadvantages associated with the benchmarking are:

- No product valorisation \rightarrow Not compliment with a circular economy approach
- Organic matter in wastewater goes to waste
- Energy-consuming if no biological method is used

On the other hand, its advantages are:

- + Easy to conduct
- + Traditional method \rightarrow Investments already made
- + No partners needed for organic matter valorisation

6.1 Market assessment

The global water technology market for the food and beverage segment was estimated at ≤ 3.3 bn in 2011 and ≤ 6.0 bn in 2020 (6.7% CAGR) with water & wastewater treatment equipment and operation & maintenance services are accounting for ≤ 2.2 and 1.8 billion, respectively. As the population grows

and demand for food increases, along with the industrialisation of nations like China and India, demand for processed food is increasing.

The developed technology targets a wider application as wastewater technology in the food industry. Nevertheless, suppose you look at the early adopters of the technology (those with a trickier situation in wastewater management and then more susceptible to adopt the technology). In that case, the main food sectors in Mediterranean countries hoard on 13% of the overall food sector investment in wastewater treatment. So, the initial percentage of the market targeted will be around 13% (Frost & Sullivan 2012, Global Water Intelligence 2012).

The global water and wastewater processing services (treatment, transfer, and disposal) market was valued at €425 bn in 2012 and estimated at €625 bn in 2016 with a predicted CAGR of 10% in the outsourcing of services sector. Sustainability measures will be the core driver of market growth. The global operating cost of wastewater treatment systems was expected to run to 58% of this market. This clearly makes outsourcing of industrial water treatment attractive to major players, with outsourcers such as General Electric and Siemens combining product and equipment companies between 2004 and 2010. In Europe, domestic wastewater is the largest burden on wastewater "UN processing infrastructure, according to the Sick Water?" report (https://digitallibrary.un.org/record/760768?In=es). However, agriculture and industry frequently produce the greatest damage unit count in the developed world. Food processing accounts for 90% of the world's use of potable water, implying that it is disproportionately represented in damaged units discharged to a public sewerage and surface water. The global water technology market for the food and beverage segment was estimated at €3.3 bn in 2011, and €6.0 bn in 2020 (6.7% CAGR) with water & wastewater treatment equipment and operation & maintenance services are accounting for € 2.2 and 1.8 billion, respectively. As the population grows and demand for food increases, along with the industrialisation of nations like China and India, demand for processed food is increasing. Thus, effective water treatment for the agri-food industry is paramount to a sustainable, circular food chain and an opportunity for European enterprises to competitively position and impact in a global, fastgrowing market.

The main competitors are the established wastewater treatment companies (AQUALIA, VEOLIA). Here are listed their weakness and strengths concerning the AFTERLIFE KER:

(-) Their solutions are mainly suitable for huge flows (urban wastewater treatment or large industries)

(-) Their innovation component is limited. They priories the use of well-established solutions

(+) They have a well-established team of experts for the commercialisation and implementation

(+) They are well-known, and they have a solid network

As stated, the target market is the food processing industry. It can be segmented by location: (1) from regions with imminent danger of water scarcity (e.g., Mediterranean countries) [marketing strategy focused on reducing the water demand by reusing]; and (2) from the rest of regions [marketing strategy focused on waste reduction and circular economy approach]

Food industries located in regions with hydric stress and/or with that produce wastewaters with characteristics that make necessary the application of special (pre)treatments [e.g., with very high COD (chemical oxygen demand) or with recalcitrant/harmful compounds]

According to this, the industries in Mediterranean countries would be potential early adopters and, among them, the industries with the highest COD in their wastewaters.

Economic information for the implementation in JAKE, a candy industry (which typically produces wastewater with a high COD), is described below.

6.2 Exploitation model

6.3 Next steps and further development paths

The following steps and milestones have been proposed as a potential pathway to follow the exploitation:

- Six months: Assessment and evaluation of exploitation potential, the definition of final business model and communication in place with the early adopters by the defined channels
- Two years: Get funding for starting the construction of a prototype in an early adopter site (agreement for testing the technology at a larger scale for TRL evolution)
- Three years and a half: Demonstration performed and legal agreements among the team members to exploit the technology
- Five years: Implementation of the technology in several countries (providing of a service or licensing)

The following costs have been initially estimated:

Six months: € 30,000.00

- Travels for meetings: 5,000 €
- Personnel costs: 20,000 €
- Dissemination & Communication companies: 5,000 €

Three years: € 720,000.00 (to run the prototype)

- Cost of prototype design, building, equipment, and operation: 500,000 €
- Personnel costs: 180,000 €
- Travels: 20,000 €
- Marketing companies: 20,000 €

To get funding to build and run the prototype, the contemplated option is applying for another research project funding under Fast Track to Innovation (FTI) call or similar.

This previous information is based on a draft business plan developed in the framework of an exploitation booster service offered by the EC for Horizon 2020 projects. This business plan was developed with the aid of LC Innoconsult International and is attached as Annex V.

7 Conclusion

In summary, the actions planned for dissemination and exploitation of the AFTERLIFE project, were conducted according to the planning. The COVID pandemic impacted the project from 2020 on until the very last General Assembly Meeting. It caused many meetings to happen online, also the MS8 BBI JU Workshop on bio-based polymers. Printed leaflets or flyers were not distributed in large numbers during this period of the project due to the travel and contact restrictions all over Europe / the world. Nevertheless, the public was informed about project and outcomes and new contacts and partnerships were formed, mainly during the events and within the project group "Value Creation from Wastewater" that was formed with the help of the Horizon 2020 booster services, especially the team from Trust-IT Services.

Annex I. Leaflet A5

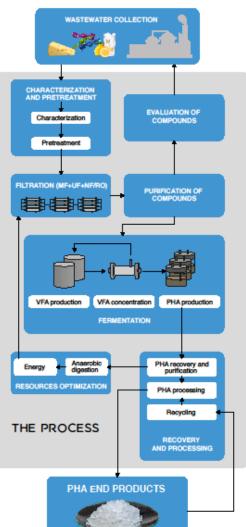
AFTERLIFE

ADVANCED FILTRATION TECHNOLOGIES FOR THE RECOVERY AND LATER CONVERSION OF RELEVANT FRACTIONS FROM WASTEWATER

www.afterlife-project.eu

Annex II. Leaflet A4

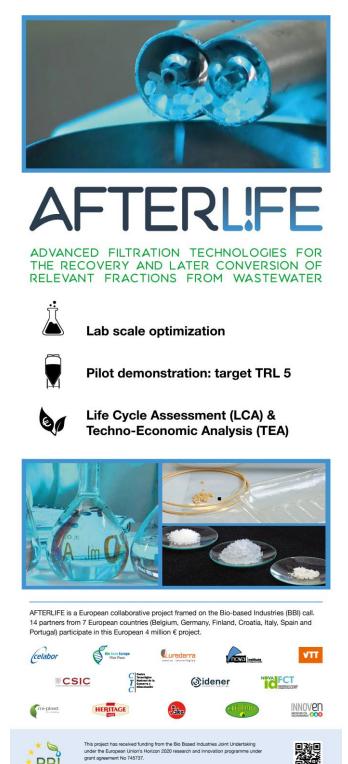
ADVANCED FILTRATION TECHNOLOGIES FOR THE RECOVERY AND LATER CONVERSION OF RELEVANT FRACTIONS FROM WASTEWATER



The **AFTERLIFE** project proposes a flexible, cost- and resource-efficient process for recovering and valorising the relevant fractions from wastewater. It will represent an advance on existing approaches to wastewater treatment, which rely on physic-chemical and biological methods.

The **AFTERLIFE** process will separate out the different components of value using a series of membrane filtration units that will separate all the solids in the wastewater. These will then treated to obtain high-pure extracts and metabolites or, alternatively, to be converted into value-added biopolymers; polyhydroxyalkanoates (PHAs).

In addition to the value extracted from the solids, the remaining outflow of the water will be ultrapure and ready for re-use.



This project has received funding from the Bio Based industries Joint Undertaking under the European Union's Hortzon 2020 research and Innovation programme under grant agreement No 745737.

Annex III. Roll-up

* 6

BBI

Bio-based Industries

Horizon 2020 European Union Funding for Research & Innovation

副約月

www.afterlife-project.eu

Annex IV. Risks assessment maps

	KER1 Risk Assessment Map								
	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion		
	Partnership Risk Factors								
1	Disagreement on ownership rules	8	5	40	Initial agreement on explotation strategy (following CA rules)	8	Control.		
2	Partners break out a create competitive product	5	3	15		0	No Action'		
	Technological Risk Factors								
3	Excesive cost of tool development and extension	8	2	16	Survey to determine the product market price and size in a target sector before including a new technology	6	Control.		
	Market Risk Factors								
6	Performance different/lower than market needs	8	8	64	Market study to know the specific needs and expectations of the customers	8	Action!		
	Financial/Management Risk Factors								
9	Inadequate business plan	8	6	48	Evolution of the exploitation roadmap to construct the business plan from a critical point of view	7	Control.		
	Environmental/Regulation/Safety risks:								
11	Regulations can affect the benefits predicted by the software for a technology	8	3	32	Previous assessment of European regulation (mainly about waste and wastewater disposal) and include it as warnings or potential constraints	7	Control.		

Т

	KER3 Risk Assessment Map										
	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion				
	Partnership Risk Factors										
1	Partners do not follow the training schedule but invent new content	8	6	48	Regular meetings to improve performance and update partners on new devlopments, exchange on experiences etc	6	Control.				
	Partners carry out low quality trainings/consultancy	7	5	35	Regular meetings to improve performance and update partners on new devlopments, exchange on experiences etc	6	Control.				
3	Partners ccompetition in the external market. (ex. NID and INN)	6	5	30	Make clear agreements before going to market.	9	Control.				
	Technological Risk Factors										
6	Dependency on stable wastewater production in terms of composition and amount.	8	6	48	Monitor the industrial wastewater production and indicate a possible solution within the end of the project.	8	Control.				
	Market Risk Factors										
11	Low interest in using a waste-derived intermediate/product	9	9	81	Search for alternative markets.	4	Warning;				
	Financial/Management Risk Factors										
21	Marketing and distribution fails due to a weak strategy	7	9	63	Revise the strategy	6	Action!				

	KER4 Risk Assessment Map									
	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion			
	Technological Risk Factors									
6	Valuables are not pure enough for reuse	7	3	21	Good pretreatment		No Action'			
7	Concentrations are not sufficient for reuse	5	3	15	Step by step concentration when needed		No Action'			
	Market Risk Factors									
11	Nobody buys the product: Too expensive	6	8	48	Regulations oblige to buid up purification and recovery concept		No Action'			
12	Worthless result: performance lower than market needs	5	5	25	Rethinking of the concept		No Action'			
	Financial/Management Risk Factors									
21	Marketing and distribution fails due to a weak strategy	7	6	42	Revise the strategy	6	Control.			

	KER5 Risk Assessment Map									
	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion			
	Partnership Risk Factors									
1	Partners desagree on investments needed to integrate the two tecnhologies. Further reserach is needed and we might not agree on the split of	8	6	48	Draft contignecy plans. Potential of partners leaving. List alternative partners.	6	Control.			
2	No manufacturer for large-scale PHA production.	8	5	40	List alternative manufacturers.	6	Control.			
3	Disagreement on ownership rules	8	10	80	Clarify issues during the project.	9	Action!			
4	Partners competing in the same market. Both NID and Innoven have the technology to produce VFA and PHA, but in the context of the AFTERLIFE project, each partner is responsible for only one nact of the process	6	6	36	Clarify issues during the project.	9	Control.			
	Technological Risk Factors									
8	Dependency on other technologies, i.e., VFA production in a stable and enough quantity.	8	1	8	Evaluate potential dependencies during the duration of the project. Can be mitigated by the end of the project.	3	No Action'			
	Market Risk Factors									
11	Partners competing in the same market	8	1	8	Draft a contingency plan. License it seperatly.	3	No Action'			
12	Partners with divergent interests	8	1	8	Draft a contingency plan	3	No Action'			
13	Low market interest in adopting these technologies	10	3	30	Search for alternative markets.	3	No Action'			
	Financial/Management Risk Factors									
21	Fails in communication among partners	8	5	40	Draft a contingency plan.	6	Control.			
22	Inadequate business plan	8	1	8	Involve experience business developers.	2	No Action'			

KER6 Risk Assessment Map								
Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion		
Partnership Risk Factors								
1 There is not a defined agreement with partners.	3	10	30	Contact with potential partners to build agreements	9	Control.		
Technological Risk Factors								
The method of production and formulation of the thermoplastic material have not been sufficiently developed for its commercialization	7	7	49	Strengthen research and development activities	9	Control.		
3 The raw material (PHA) has variable properties	6	8	48	Establish points to detect differences in properties and vary the formulation to obtain a thermoplastic material with the same properties in all cases.	8	Control.		
Market Risk Factors								
4 The developed solution is not well received in the market	8	3	24	a) Optimization of the solution developed to better adapt to the needs of the sector. b) Value the environmental benefits of the proposed solution compared to other conventional plastic products.	6	Control.		
A market need is detected that was not considered in the development of thermoplastic material.	6	4	24	Modifications in formulation or production process to adjust to market demand	6	Control.		
IPR/Legal Risk Factors								
6 Early patern exist	8	2	16	Tecnical changes in the methodology / technology	8	Control.		
Financial/Management Risk Factors								
As LUREDERRA is a small technology center, lack of personnel or resources to carry out the necessary actions for the correct exploitation of the developed solution	7	5	35	a.) Adapt strategy to low cost activities b.) Dedicate staff more specifically	9	Control.		
8 Production costs do not match market prices	8	3	24	a) Modifications in the production and formulation process b) Emphasize environmental benefits to justify the higher price	5	Between Control & No Action		
Environmental/Regulation/Safety risks:								
9 The developed solution does not comply the food safety regulation	9	2	18	periodic reviews to detect possible breaches or changes in legislation. If changes are necessary in the developed formulation	9	Control.		
10 The developed solution does not comply the degradable plastics regulation	9	2	18	periodic reviews to detect possible breaches or changes in legislation. If changes are necessary in the developed formulation	9	Control.		

KER7 Risk Assessment Map

	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion
	Partnership Risk Factors						
1	Early patern exist	8	5	40	Tecnical changes in the methodology / technology	8	Control.
2	Better tecnology/methodology exist	6	9	54	Optimization of the methodology to have better results	6	Action!
	Technological Risk Factors						
з	An busnies partner leaves the market	8	2	16	Find new partners that fulfill the role of the partner who has left	6	Control.
4	Disagreement on ownership rules	6	6	36	Search for new agreements	8	Control.
	Market Risk Factors						
6	Little success in technology transfer	8	8	64	Offer services that do not demand investment by the partners (replicable material like tutorials etc). Bad for business but good for social impact	8	Action!
	IPR/Legal Risk Factors						
7	Legal problems: proceeding againt us	8	1	24	L .		No Action'
	Financial/Management Risk Factors						
9	Marketing and distribution fails due to a weak strategy	6	6	36	Revise the strategy	6	Control.
10	Marketing and distribution fails due to a lack of resources	7	8	56	a.) Adapt strategy to low cost activities b.) Dedicate staff more specifically	6	Action!
	Environmental/Regulation/Safety risks:						
11	Product/service does not comply with the standards	8	4	32	changes in methodology / technology to perform meet standards	6	Control.

Т

	KER8 Risk Assessment Map								
	Description of Risks	Degree of criticality of the risk related to the final achievement of this Key Exploitable Result. Please rate from 1 to 10 (1 low- 10 high)	Probability of risk happening Please rate from 1 to 10 (1 low - 10 high)	Risk Grade	Potential intervention	Estimated Feasibility/Success of Intervention Please rate from 1 to 10 (1 low- 10 high)	Conclusion		
	Partnership Risk Factors								
1	Early patern exist	8	1	8	Tecnical changes in the methodology / technology	9	Control.		
2	Better tecnology/methodology exist	6	4	24	Optimization of the methodology to have better results	6	Control.		
	Technological Risk Factors								
3	Clients do not like the platform and thus also the trainings are not of interest	7	5	35	Adapt the trainings so that they are more methodological and focus less on one specific software	9	Control.		
4	An busnies partner leaves the market	8	2	16	Find new partners that fulfill the role of the partner who has left	6	Control.		
5	Disagreement on ownership rules	6	6	36	Search for new agreements	8	Control.		
	Market Risk Factors								
6	Unsuitable sales force	7	1	7	hire staff	9	Control.		
7	Little success in technology transfer	8	2	16	Offer services that do not demand investment by the partners (replicable material like tutorials etc). Bad for business but good for social impact	8	Control.		
	IPR/Legal Risk Factors								
8	Legal problems: proceeding againt us	8	1	24			No Action'		
	Financial/Management Risk Factors								
9	Marketing and distribution fails due to a weak strategy	6	6	36	Revise the strategy	6	Control.		
10	Marketing and distribution fails due to a lack of resources	7	8	56	a.) Adapt strategy to low cost activities b.) Dedicate staff more specifically	6	Action!		
	Environmental/Regulation/Safety risks:								
11	Product/service does not comply with the standards	8	4	32	changes in methodology / technology to perform meet standards	6	Control.		

Annex V. The Business Plan Structure

The Business Plan Structure

KER Form	
Problem	Describe the problem you are addressing (the problem your potential users have). Potential users are the people, companies, organisations, etc. that you expect will use the result (and generate an impact). They are your "Customers". Potential users: Food processing industry Generation of a relevant volume of wastewater by food processing industries like fruit processing, cheese manufacturing and sweets manufacturing, that must be treated before discharge. The reported costs for the treatment of the wastewater in the project are around $1.5 \in /m^3$ (project internal communications). On the other hand, they have an important demand of clean water for their production process. The sum of wastewater treatment and water consumption implies between 150,000 and 200,000 \in (considering an average price of $3.16 \in /m^3$) per year for a small size food industry. Moreover, these highly demanding water activities have associated social and environmental impacts. The consumption of water is a key problematic that is gaining more and more weight due to climate change. It is even more important in the southern European regions, such as South Spain, where, together to the scarce rains, there is an important farming activity and a huge concentration of food industries with a high demand of water. This fact would imply a growing discomfort towards the presence of these industries by a part of the population and potential additional taxes due to the associated environmental burdens. Source: Tap water price (average from Europe's Water in Figures (2021): https://www.eureau.org/resources/publications/eureau-publications/5824- europe-s-water-in-figures-2021/file)
Alternative solution	 Describe how your "customer" has solved the problem so far. Wastewater from food processing industry is generally pretreated in-situ before (1) discharging into the sewage network or (2) being received by authorized waste manager. The purpose of these practices is the depuration of water before discharging into the water bodies but not the valorisation of the organic matter inside. In same specific cases, part of the waste streams can be valorised (e.g., cheese whey); but it does not imply a recovery of clean water for the process, and it is made only for concentrate streams and not for the diluted streams from the project, which are the majority. The common technology that is applied in water depuration is active sludge process. This technology uses mixed bacterial cultures (sludges) to degrade the organic matter in the wastewater. It is an aerobic process (thus required air injection) that produces a significant amount of biological sludge, which should be treated. The main disadvantages associated to the benchmarking are:

	- No product valorisation $ ightarrow$ Not compliment with circular economy approach
	- Organic matter in wastewater goes to waste
	- Energy-consuming if no biological method is used
	On the other hand, its advantages are:
	+ Easy to conduct
	+ Traditional method \rightarrow Investments already made
	+ No partners needed for organic matter valorisation
Unique Selling Point USP - Unique Value Proposition	Describe the competitive advantages, the innovative aspects. What does your solution do better, what are the benefits considering what your user wants, how does your solution solve his/her problem better than alternative solutions, what
UVP	distinguishes the KER from the competition / current solutions?
	A solution for in-situ cleaning of process wastewater to produce clean water and recover organic matter in it for its commercialisation as raw material of value-added products.
	Its main advantages in comparison with current benchmarking:
	+ In-situ water depuration (not need of dependency on external companies or storage space)
	+ Availability of clean water (reduction of grid water acquittance)
	+ Additional revenues thanks to the valorisation of organics and nutrients in the wastewater, which are not typically valorised
	+ Improvement of the brand image due to the implementation of circular economy practices
Description	Describe in a few lines your result and/or solution (i.e., product, service, process, standard, course, policy recommendation, publication, etc.). Use simple wording, avoid acronyms, make sure you explain how your UVP is delivered.
	The solution consists of a filtration cascade system able to separate 100% of suspended solids and nutrients from wastewater and produce clean water that can be reused in the process. The filtration equipment parameters can be fine tunned to apply the solution to different food industry wastewaters.
"Market" – Target market	Describe the market in which your product/service will be used/can "compete", answering the following questions:
	- What is the target market? - Who are the customer segments?
	who are the customer segments:
	Target Market: Food processing industries Customer segments:
	- By location: (1) from regions with imminent danger of water scarcity (e.g., Mediterranean countries) [marketing strategy focused on reducing the

	water demand by reusing]; and (2) from the rest of regions [marketing strategy focused on waste reducing and circular economy approach]
"Market" – Early Adopters	Early adopters are the "customer you are willing to address first. They are usually the ones that feel the problem harder than all the others. (they are not the project partners).
	Food industries located in regions with hydric stress and/or with that produce wastewaters with characteristics that make necessary the application of special (pre)treatments [e.g., with very high COD (chemical oxygen demand) or with recalcitrant/harmful compounds]
	According to this, the industries in Mediterranean countries would be potential early adopters and, among them, the industries with the highest COD in their wastewaters.
	Economic information for the implementation in a candy industry (which typically produces a wastewater with a high COD) is described below.
"Market" - Size	What is the market size for your solution? What is the percentage of that market you will be targeting?
	The global water technology market for food and beverage segment was estimated at \in 3.3 bn in 2011 and \in 6.0 bn in 2020 (6.7% CAGR) with water & wastewater treatment equipment and operation & maintenance services accounting for \in 2.2 and 1.8 billion respectively. As population grows and demand for food increases, along with the industrialization of nations like China and India, demand for processed food is increasing.
	The developed technology targets a wider application as wastewater technology in food industry. Nevertheless, if you look at the early adopters of the technology (those with a trickier situation in wastewater management and then, more susceptible to adopt the technology), the main food sectors in Mediterranean countries hoard on 13% of the overall food sector investment in wastewater treatment. So, the initial percentage of market targeted will be around 13%.
	Source: Frost & Sullivan 2012, Global Water Intelligence 2012
"Market" - Trends	What are the market trends related to your solution?
	The global water and wastewater processing services (treatment, transfer and disposal) market was valued at €425 bn in 2012 and estimated at €625 bn in 2016 with a predicted CAGR of 10% in the outsourcing of services sector. Sustainability measures will be the core driver of market growth. The global operating cost of wastewater treatment systems was expected to run to 58% of this market. This clearly makes outsourcing of industrial water treatment attractive to major players, with outsourcers such as General Electric and Siemens combining product and equipment companies between 2004 and 2010. In Europe, domestic wastewater is the largest burden on wastewater processing infrastructure, according to the "UN Sick Water?" report (https://digitallibrary.un.org/record/760768?ln=es). However, agriculture and industry frequently produce the greatest damage unit count in the developed world. Food processing accounts for 90% of the world's use of potable water, implying that it is disproportionately represented in damage units

	market for food and beverage a bn in 2020 (6.7% CAGR) with operation & maintenance servi As population grows and industrialization of nations like increasing. Thus, effective wate to a sustainable, circular food to competitively positioning an	th water & ces accounti demand fo e China and er treatment chain and a	wastewater treatment ing for € 2.2 and 1.8 billi or food increases, al d India, demand for pro for the agro-food indust in opportunity for Europ	equipment and on respectively. ong with the ocessed food is ry is paramount ean enterprises
Settings – Acceptance	What is the public acceptance? Circular economy / low environmental footprint is generally regarded as in comparison with conventional practices. The understanding of these however is mostly poor and should and will be improved in the future. A recently conducted small social acceptance study within AFTERLIFE im that there is at least a small green premium that buyers are willing to pay it is possible to increase products prices when it is claimed that circular e practices or measurement to reduce the environmental footprint are imple in their production process (from AFTERLIFE social acceptance study, avai project website)			
	What is the social impact? The SWOT analysis of the AFT economic aspects that need to is the legal situation, as there addition, there is a high urgend especially water flows, which AFTERLIFE process has the stre and water use. The introduction governance and education, as opportunities there are to ind building the biorefinery plant in students to get involved (from project website).	be considered are still no r cy in the sourcy is particulated angth of beir on of this pro- s agencies crease wate bear a univer	ed in the development. A estrictions on the use of thern regions to optimiz any requested by the a ng able to significantly op ocess also offers great o can learn from the dev r and resource efficience rsity could also provide o	major strength wastewater. In e resources and authorities. The otimize resource pportunities for elopment what cy. In addition, pportunities for
	What is the environmental imp The environmental impact ass lower than common alternative 1: Table 1. Results for the di comparison between AFTERI	ociated to t e in most of ifferent envir _IFE technology	the categories as depict	ted in the Table
	Impact category	Unit	Water purification (AFTERLIFE)	Common WWTP*
	Climate change	kg CO ₂ eq	0.078	0.327
	Acidification	mol H+ eq	0	-
	Eutrophication, freshwater	kg P eq	0	1.33E-04
	Eutrophication, marine	kg N eq	0	-
	Eutrophication, terrestrial	mol N eq	0.001	-

	Ecotoxici	ty, freshwater	r CTUe	0.853		1.9
	Land use	cy, neshwater	Pt	0.226		-
		use, fossils	MJ	1.625		1.02-2.29**
			_		nlant life cvc	
	*Raghuvanshi et al (2017). Wastewater treatment plant life cycle assessme treatment process to reuse of water					
	**Capodaglio and Olson (2019). Energy Issues in Sustainable Urban Wastewat					an Wastewater
	Management: Use, Demand Reduction and Recovery in the Urban Water Cycle					
	What is the economic impact?					
	What is the economic impact? The benefits for the technology users are describe below (Please, check section (
		Pricing for furt			ow (Please, cl	neck section Go
		-		-	oation of blue	collar and high
	qualified job	-		uled by the ch		
	quannea jor	55.				
Settings – Legal	What are th	ne legal requirer	ments?			
and regulatory		ne normative red				
			-			
aspects	wnat are th	ne ethical requir	ements?			
			•			t regulation on
			-	-		er Management
	Directive, U	WWD). The nat	tional regula	ition should be	applied	
	-	-	-			ises are located
	-		-			er), the quality
				-		aning water for
	use in food	industry are de	escribed in R	D 1620/2007 a	and in Table 2	
	Table 2 Ou	uality paramoto	vrc to validat	to a water stre	am ac cuitabl	- for close and
	Table 2. Quality parameters to validate a water stream as suitable for clean an					
1	ļ	process w				e for clean and
	Use		vater in food	industry (RD	1620/2007)	
	Use	process w				Other criteria
			vater in food E. coli	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria
	Use Clean and	Nematodes	vater in food E. coli 1.000	industry (RD Suspended	1620/2007)	Other criteria Legionella
	Clean and	Nematodes	vater in food E. coli	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
	Clean	Nematodes	vater in food E. coli 1.000 UFC/100	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella
	Clean and process	Nematodes	vater in food E. coli 1.000 UFC/100	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
	Clean and process water in	Nematodes	vater in food E. coli 1.000 UFC/100	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
	Clean and process water in food	Nematodes	vater in food E. coli 1.000 UFC/100	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
	Clean and process water in food industry	Nematodes	vater in food E. coli 1.000 UFC/100 mL	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
	Clean and process water in food industry	Nematodes 1 egg/10 L	vater in food E. coli 1.000 UFC/100 mL	industry (RD Suspended Solids	1620/2007) Turbidity	Other criteria Legionella spp.:100
Go to Market – Use	Clean and process water in food industry Ethical issue	Nematodes 1 egg/10 L es have not bee	vater in food E. coli 1.000 UFC/100 mL n identified.	industry (RD Suspended Solids 35 mg/L	1620/2007) Turbidity N.A.	Other criteria Legionella spp.:100 UFC/L
	Clean and process water in food industry Ethical issue <i>Explain wha</i>	Nematodes 1 egg/10 L es have not been t is your "use m	n identified.	industry (RD Suspended Solids 35 mg/L	put in use (mo	Other criteria Legionella spp.:100 UFC/L
Go to Market – Use model	Clean and process water in food industry Ethical issue Explain wha "customers"	Nematodes 1 egg/10 L es have not been t is your "use m t to generate a	n identified.	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use	1620/2007) Turbidity N.A. put in use (mar models: mar	Other criteria Legionella spp.:100 UFC/L UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product	Nematodes 1 egg/10 L es have not been t is your "use m t o generate an t, provision of a	n identified. n identified. nodel", how n impact). E	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use	1620/2007) Turbidity N.A. put in use (me models: mar e, technology	Other criteria Legionella spp.:100 UFC/L UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement,	Nematodes 1 egg/10 L es have not been t is your "use m t o generate an t, provision of a contract resear	n identified. n identified. nodel", how n impact). E	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use	1620/2007) Turbidity N.A. put in use (me models: mar e, technology	Other criteria Legionella spp.:100 UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement,	Nematodes 1 egg/10 L es have not been t is your "use m t o generate an t, provision of a	n identified. n identified. nodel", how n impact). E	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use	1620/2007) Turbidity N.A. put in use (me models: mar e, technology	Other criteria Legionella spp.:100 UFC/L UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement,	Nematodes 1 egg/10 L es have not been t is your "use m t o generate an t, provision of a contract resear	n identified. n identified. nodel", how n impact). E	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use	1620/2007) Turbidity N.A. put in use (me models: mar e, technology	Other criteria Legionella spp.:100 UFC/L UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement, Note trainin	Nematodes 1 egg/10 L es have not been t is your "use m t to generate an t, provision of a contract resear tg is a service.	n identified. nodel", how n impact). E service, dire	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use oct industrial us ions, standards	1620/2007) Turbidity N.A. put in use (mo models: mar e, technology , etc.	Other criteria Legionella spp.:100 UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement, Note trainin Through pr	Nematodes 1 egg/10 L es have not been t is your "use m t to generate an t, provision of a contract resear tg is a service.	vater in food E. coli 1.000 UFC/100 mL n identified. nodel", how n impact). E service, direct rch, publications ervice to fo	industry (RD Suspended Solids 35 mg/L the KER will be xamples of use ct industrial use ions, standards	1620/2007) Turbidity N.A. put in use (mo e models: mar e, technology , etc. industries or	Other criteria Legionella spp.:100 UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement, Note trainin Through pr licence agre	Nematodes 1 egg/10 L es have not been t is your "use m t to generate an t, provision of a contract resear tg is a service.	vater in food E. coli 1.000 UFC/100 mL n identified. nodel", how n impact). E service, dire rch, publication ervice to for gineering and	the KER will be samples of use ions, standards	1620/2007) Turbidity N.A. put in use (mo models: mar e, technology , etc. industries of irms that will	Other criteria Legionella spp.:100 UFC/L
	Clean and process water in food industry Ethical issue Explain wha "customers" new product agreement, Note trainin Through pr licence agre	Nematodes 1 egg/10 L es have not been at is your "use m to generate at t, provision of a contract resear og is a service. rovision of a segment with englise	vater in food E. coli 1.000 UFC/100 mL n identified. nodel", how n impact). E service, dire rch, publication ervice to for gineering and	the KER will be samples of use ions, standards	1620/2007) Turbidity N.A. put in use (mo models: mar e, technology , etc. industries of irms that will	Other criteria Legionella spp.:100 UFC/L

"Market" – Competitors	Who are your "competitors" (note: they are the ones offering "alternative solutions")? What are their strengths and weaknesses comparing to you?
	Competitors: established wastewater treatment companies (AQUALIA, VEOLIA)
	 Their solutions are mainly suitable for very large flows (urban wastewater treatment or large industries) Their innovation component is limited. They priories the use of well-established solutions They have a well-established team of experts for the commercialisation and implementation They are well-known, and they have a solid network
Go to Market – IPR Background	What is the Background (type/ partner)?
Duckground	VTT has expertise in the development of membrane filtration solutions for different process. This expertise includes different membrane filtration technologies There is no previous patent.
Go to Market – IPR Foreground	What is the Foreground (type/ partner)?
roregiounu	VTT has developed during the project a cascading filtration system by combining different filtration technologies and optimising process conditions for the four tested wastewaters
Go to Market –	What is the time to market?
Timing	6 months: Assessment and evaluation of exploitation potential, definition of final business model and communication in place with the early adopters by the defined channels
	2 years: Get funding for starting of the construction of a prototype in an early adopter site (agreement for testing the technology at larger scale for TRL evolution)
	3.5 years: Demonstration performed and legal agreements among the team members to exploit the technology
	5 years: Implementation of the technology in several countries (providing of a services or licensing)
Go to Market - Channels	How will you reach the Early Adopters?
	 Channels: Stakeholders' webinar (2 stakeholders webinars developed during the project; some of the attendees have sent mails to know more about the technology): DONE Contacts in technical congresses: PENDING Contact with regional food industry cooperatives (e.g., ASAJA in Andalusia region): PENDING Meeting with External Advisory Board (EAB) members since some of them are industries involved in the filtration and PHA markets: DONE

		and p	ations on open a roduction of proj s published in th	ect newsletter	s: DONE	ion al	bout filtration s	tep)
Go to Market - Pricing		mation of	he eventual price price / unit and r			h brea	akeven point (co	over
	a fi cha	ltration ca racteristics	er from a Spanis scade (Microfiltr s of the input and racteristics of the	ation, Ultrafilt l output strea	ration and N ms are descri	anofil ibed i	ltration steps). n Table 3.	The
	i ai						-	ann 1
			Suspended solids (mg/L)	Turbidity (NTU)	Conductiv (mS/cm	-	COD (mg/L)	
		Input	34000	3600	1	2.2	77500	
			34000			2.2	180	-
		Output		0.12	0	.1/	190	J
	As e	expected,	the economic da	ita at lab sca	e (from VTT	work) are not attrac	tive
		ble 4), if w	e consider that t 4. Cost associat	he costs of th	e clean water ition step for	r are a	around 3.16 €/r wastewater	
		ble 4), if w	e consider that t 4. Cost associat Treatm (m ³ /da	he costs of th ed to the filtra ent capacity	e clean water	r are a	around 3.16 €/r	
	(Tal	ble 4), if w Table	e consider that t 4. Cost associat Treatm	he costs of th ed to the filtra ent capacity	e clean water ition step for CAPEX	r are a	around 3.16 €/r wastewater OPEX	n ³ .
	(Tal	ble 4), if w Table	e consider that t 4. Cost associat Treatm (m ³ /da	he costs of th ed to the filtra ent capacity	e clean water ition step for CAPEX 2.09	r are a	around 3.16 €/r wastewater	n ³ .
	(Tal	ble 4), if w Table	e consider that t 4. Cost associat Treatm (m ³ /da	he costs of th ed to the filtra ent capacity	e clean water ition step for CAPEX	r are a	around 3.16 €/r wastewater OPEX	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated	he costs of th ed to the filtra ent capacity y) ne economic c pment and ec	e clean water ition step for CAPEX 2.09 68 ata from sim conomics of so	Jake	around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5):	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated	he costs of th ed to the filtra ent capacity y) ne economic c pment and ec	e clean water ition step for CAPEX 2.09 68 ata from sim conomics of so	Jake	around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated simul Treatment	he costs of the d to the filtration of the capacity (y) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	e clean water tion step for CAPEX 2.09 68 ata from sim conomics of so n step for Jak ocess model)	Jake Jake ulatio cale (around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated simul Treatment capacity (m ³ /da	he costs of the d to the filtration of the capacity (y) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	e clean water tion step for CAPEX 2.09 68 ata from sim conomics of so n step for Jak ocess model)	Jake Jake ulatio cale (around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside Table 5.	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated simul Treatment	he costs of the d to the filtration of the capacity (y) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	e clean water tion step for CAPEX 2.09 68 ata from sim conomics of so n step for Jak ocess model)	Jake Jake ulatio cale (around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside Table 5.	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated simul Treatment capacity (m ³ /da	he costs of the ed to the filtra ent capacity y) ne economic co pment and eco to the filtratio ations with pr CAPEX y)	e clean water tion step for CAPEX 2.09 68 ata from sim conomics of so n step for Jak ocess model) OPEX 0.23 (per	Jake Jake ulatio cale (around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from	n ³ .
	(Tal	ble 4), if w Table (m ³ /y) m ³ vever, whe ch conside Table 5.	e consider that t 4. Cost associat Treatm (m ³ /da 84 en we consider th rs industrial equ Cost associated simul Treatment capacity (m ³ /da	he costs of the ed to the filtra ent capacity y) ne economic c pment and economic content co the filtrationations with pr CAPEX y) 0.617	e clean water tion step for CAPEX 2.09 68 ata from sim conomics of so n step for Jak ocess model) OPEX 0.23 (per	are a Jake Ulatio cale (ae was BEN 1.55 was cost 2.84	around 3.16 €/r wastewater OPEX 0.68 (per year 22 ons (process mo Table 5): stewater (from IEF 5 (avoid stewater treatmost)	n ³ .

				MSP** (sludge for	
				PHA production)	
	*Tap water price https://www.eureau.or europe-s-water-in-figu	rg/resources/publi		blications/5824-	
	**Considering the previous figures, the minimum selling price for sludge a feedstock for PHA production is $5.52 \notin /34$ kg of solids recovered from water (pla life spam: 15 years, for depreciation calculations), that is, $0.16 \notin /kg$				
	The MSP of the sludge (160 \in /ton) can compete in an advantageous position with common raw materials for PHA production (first generation: 200-460 \in /ton of sugar crop; second generation: 90-2800 \in /ton cellulosic sugar*).				
		n of the wastewate	er (i.e., food additiv	obtained depending on ves). PHA (the cheapest analysis.	
	*Ming-Hsun Cheng. Th Processing Technologie	-		fferent Feedstocks and lets/purl/1495027)	
The Team	Describe the team responsible for making sure the result is used (responsible implement the exploitation plan) include, if possible, names and qualifications of the team members.				
	Profile	Partner in AFTERLIFE	Main contact	Main activities	
	Technology developer	VTT	Hanna Kyllönen Antti Grönroos	Technology owner	
	Exploitation partner	IDENER/NOVA	Maria Lopez Freya Sautner	Draft Business Model Contact with external team members	
	Dissemination and communication	NOVA	Freya Sautner	Development of D&C compaign	
	partner				
The Team – External providers	lf you need to integrat Which type of external		om do you need (n	new) external partners?	
	Profile		Main activities	to do	
	IPR expert		f IPR related to	o the solution and nd legal documents	
	Marketing expert	adopters	and contact v		
	Exploitation expert		of the final busine		
	External engineeri company	ng Deployment premises	of the prototype	in the early adopter	
		1			

Actions	badmap			
	Briefly describe acti	ons planned to be	executed 3-6 months	after the end of the proje
	3 months: involved	of external team	members	
	6 months: Definition	on of final busines	s model and commu	unication in place with th
	adopters by the def	fined channels		
Roles	Roles of partners in	volved in the action	ns defined above.	
	Profile	Partner in AFTERLIFE	Main contact	Main activities
	Technology developer	VTT	Hanna Kyllönen Antti Grönroos	Technology owner
	Exploitation	IDENER/NOVA	Maria Lopez	Draft Business Model
	partner		Freya Sautner	Contact with external team members
	Dissemination	NOVA	Freya Sautner	Development of D&C
	and			compaign
	communication partner			
	IPR expert			Definition of IPR related to the solution
				and preparation of agreements and legal documents required
				for its exploitation
	Marketing expert			Identification and contact with potential early adopters
	Exploitation expert			Development of the final business plan
	External engineering company			Deployment of the prototype in the early adopter premises

	 Travels for meetings: 5,000 € Personnel costs: 20,000 € Dissemination & Communication companies: 5,000 €
	 3 years to run prototype: € 720,000.00 Cost of prototype design, building, equipment, and operation: 500,000 € Personnel costs: 180,000 € Travels: 20,000 € Marketing companies: 20,000 €
Revenues	Projected revenues and eventual profits once the KER will be used (1 and 3 years after use)
	Licensing of the technology: around 30 k€ per license
	1 year: 0 €
	3 years: 0 €
	4 years: 150,000 € (5 licenses sold per year)
	Providing as a service: benefits after technology implementation in a food industry: around 10% (80 k€)
	1 year: 0 €
	3 years: 0 €
	4 years: 240,000 € (3 implementations per year)
Other sources of coverage	Resources needed to bridge the investment needed to increase TRL and ensure the result is used.
	To build and run the prototype, the team will apply for another research project funding: Fast Track to Innovation (FTI) or similar.
-	Describe impact in terms of growth/benefits for the society
year time	The impact at 3 years is still limited since it is not expected a wide adoption of the technology up that date. In general terms, the implementation of this solution will contribute to:
	Reduction of water demand by the food industries by reutilising water Valorisation of wastewater into a high added-value product, contributing to the circular economy concept Blue collar and high qualified jobs creation in, mainly, rural regions where the food industries are located

