This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement N° 745762.

Bio-based Industries

Consortium

Herizon 2020 European Union Funding

BIOMATERIALS FOR SMART FOOD PACKAGING

Dr. Amaya Igartua Coordinator of BIOSMART Project

TEKNIKER

BBI| 29/03/2021

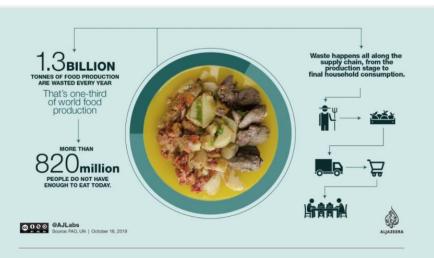
Université de Lille

Charles Viollette

Lipofabrik

HEIA-FR

TA-FR



THE PROBLEM: FOOD LOSS AND WASTE GENERATION

In Europe, 88 Millions Tons of food are wasted each year Equivalent to the 20 % of the food produced in Europe

Food lost along the value chain

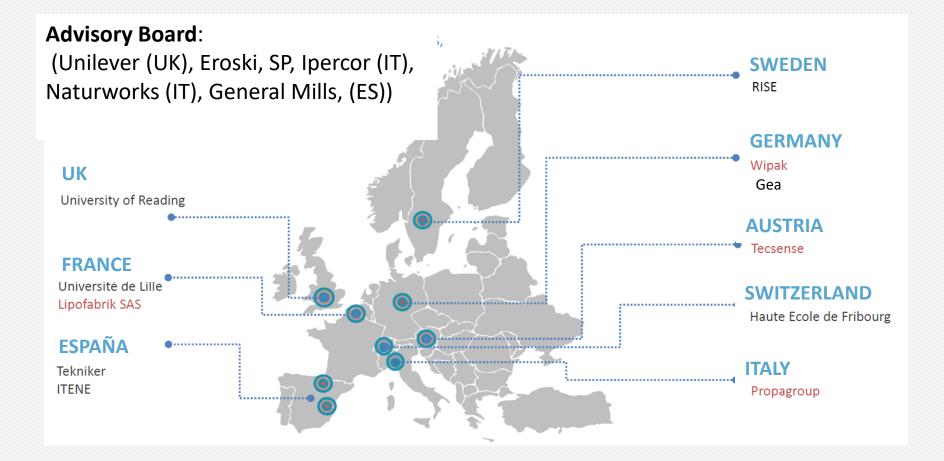
> 50% of the lost is in the food chain

97% of the food global residues are sent to the weir with a cost of **> 150 billions euros**

degrading the soil in Europe in a 30-80%

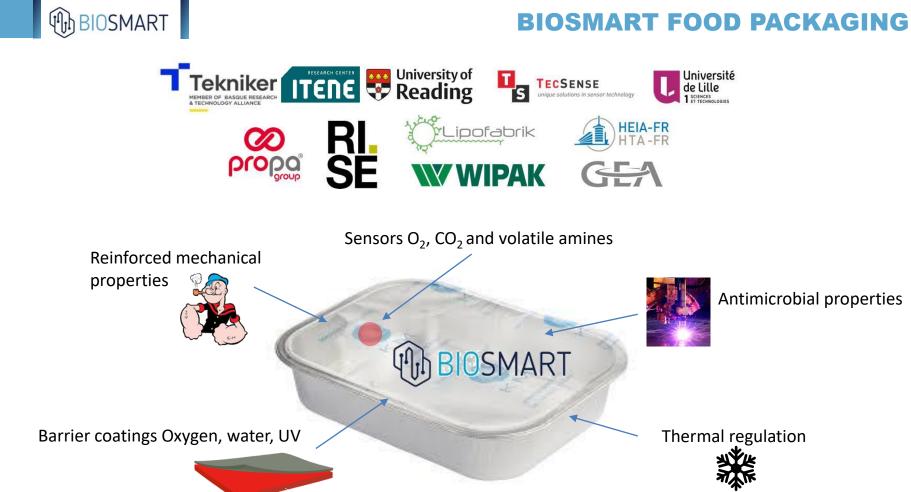
- 304 Mton CO₂ eq. (6% of the total Green house emissions)

CONCEPT AND CHALLENGE


Actual packages: Light, high performance, multilayer, in some cases, difficult to recycle.

BIOSMART: Compostable or recyclable packaging from natural resources, with high mechanical performance and with enough barrier to accomplish the needs of the food.

The project address all the food chain of the product in the design phase


CONSORTIA

OBJECTIVES

 Development (TRL3-5) of packaging manufactured with materials from biomass: Biopolymers (PLA, PEA) Development (PLA, PEA) 	2 Mechanical properties of the PLA, developing biocomposites with nanoclays.	3 Implementation of several functionalities in different demonstrators
 Barrier coatings Hydrophobic surfaces Thermal regulation Antioxidants, antifungal and antimicrobial based lipopeptides Sensors indicating food quality 	4 Reduction of the environmental impact increasing food shelf life and keeping food quality	5 Development of an application to define the materials functionalities, performance and the commercial needs

IMPROVEMENT OF MECHANICAL PROPERTIES

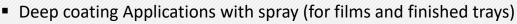
PLA reinforcement with nanoclays

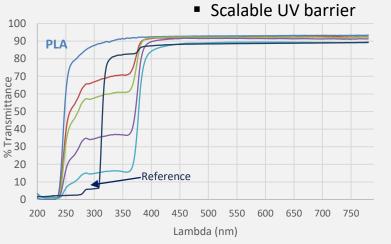
■ Composite PLA+Nanoclays ✓ twin screw extruder

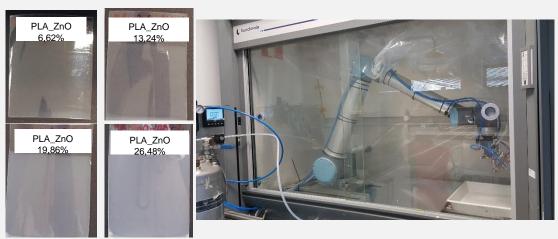
Processing with a structure of nanolayers(PLA+NC/PLA sealing layer)
 ✓ Coextrusion in line with 3 individual extrusión processes

Characterization

- ✓ Resistance: Young modulus increase 20 % and elongation to fracture 25 % (sheet) − 70 % (film).
- ✓ **Keeping** thermal properties.
- ✓ Improving **permeability** 20-30%.

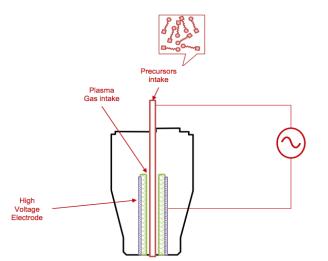

BARRIER COATINGS

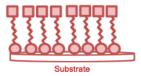



BARRIER TO WATER AND OXYGEN

UV BARRIER

- Biobased formulations, biodegradable with nanoclays on PLA or PLA nanoclays substrates
- Coatings with good adhesión and transparency
- Applications with rollers and gravure printing
- Coatings characterization of PLA with nanoclays:
 - Reduction 95 % OTR
 - Reduction 15% WVTR
 - Solgel Coatings with % ZnO

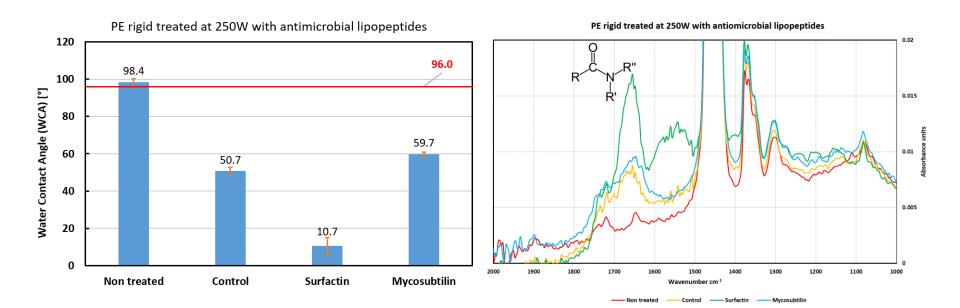




PACKAGING WITH ANTIMICROBIAL PROPERTIES

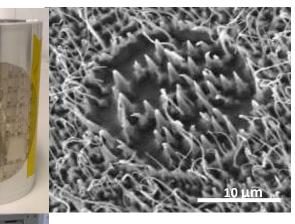
Inmobilization by plasma of lipopeptides in the packaging

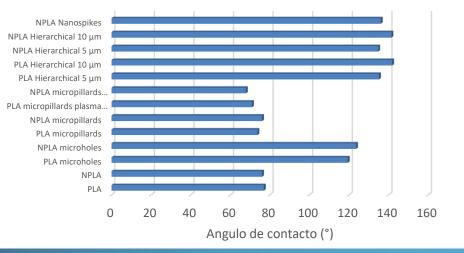
To generate antimicrobial surfaces linking lipopeptides by **Cold Atmospheric Plasma**


The plasma is generated by means of the use of specific precursors:

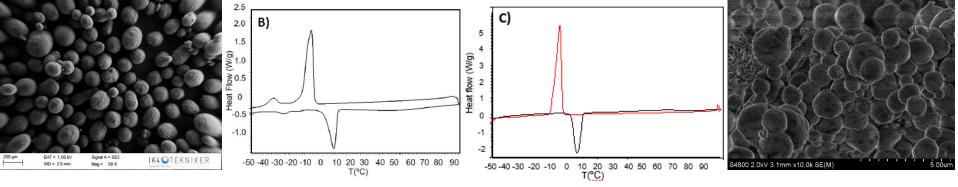
- A specific gas (N₂, Ar, He)
- Precursors able to link chemically to the surface

CHEMICALS			
SURFACTIN	MICROSUBTILIN	NISIN	
Biosurfactant Antibiofilm Antiviral	Biosurfactant Antifungi	Antibacterial properties E234	


- Change in the surface tension measured by contact angle
- Detection of functional groups (FTIR)
- Detection of the antimicrobial properties (Antibacterial tests, antifungi)


Topographies with superhydrophobic properties

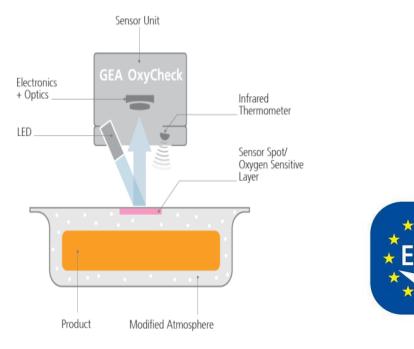
STATISTICS IN CONTRACTOR OF THE OWNER OWNE


Replication of micro and nanostructures in flexible film to confer added properties to the polymers. The adhesión and proliferation of the bacteria decreases.

BIOSMART THERMOREGULATION Encapsulation of phase change materials

- ✓ To keep the cold chain (-5 a 10^oC) from the supermarket to home
- Using phase change materials (PCMs): Vegetable oils These substances can absorb heat to change the phase from solid to liquid, in a certain range of temperature, keeping constant the temperature
- Micro encapsulation of the PCMs to be embedded in the packaging

Organic encapsulation


∆H _m (J/g)	T _m (°C)	ΔH _c (J/g)	T _c (°C)
-77	10	75	-8

Inorganic encapsulation

ΔH _m (J/g)	T _m (°C)	ΔH _c (J/g)	T _c (°C)
-142	8	137	-8

SENSOR de O₂ - Optomechanical

- 1. The sensor inside the packaging absorb LED light.
- 2. It is **detected** with a **wavelength that emits the sensor**. This change in function of the concentration of the oxygen inside the MAP packaging and this principle is used **to evaluate the concentration of the O₂ in the packaging**.

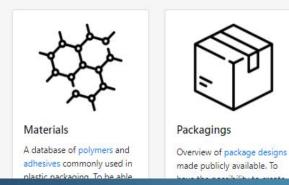
BIOSMART SENSORS: O₂, Volátil amines and CO₂

Non destructive control system, aplicable to control the 100% of the packages in line.

It is possible to avoid thrown away food packaging

The packaging with controlled atmosphere (MAP) measure <0,5% O_2

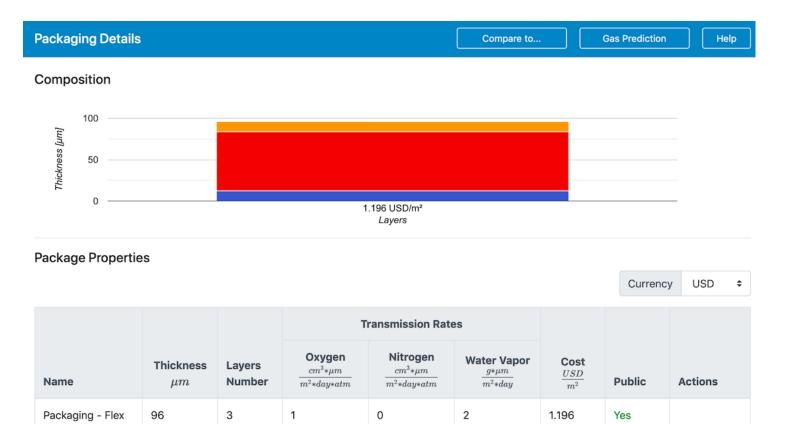
New: CO_2 sensors (trials in the GEA machine on going) and volátil amines (manual application) are developed at prototype scale.


OPEN BETA VERSION: https://ppcc.picc.center/

Features

Welcome to the Plastic Packaging Cost Calculator (PPCC). The goal is to provide some useful tools for the design of plastic packaging. At the moment the focus is on the coextruded plastic packaging, where multiple single polymers layers are combined into a packaging foil.

This application is part of the european project BIOSMART.

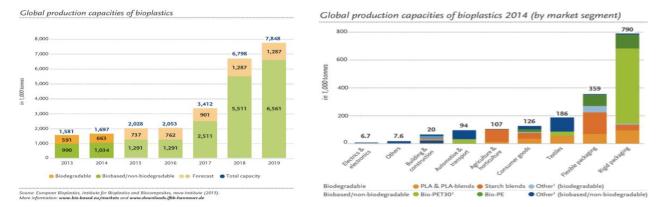


Calculations

Calculation routines to optimize the cost in regards to its harrier properties and

SIMULATION OF Barrier Properties - App

CONCLUSIONS


- 1. Different tecnologies are being **developed to give functionalities to the biobased packaging** to increase food shelf life inside the packaging:
 - Copolymers based in biomass
 - Lipopeptides with antifungal properties
 - **Textured surfaces** with superhydrophobic properties
 - **Barrier Coatings** (oxygen, water, UV)
 - Thermoregulation
 - Gas sensors
 - App to analyse the cost to introduce technologies in the market in the right moment.
- 2. Preparation of functional prototypes and scale up the most developed technologies.
- 3. To evaluate the **consumer point of view** of the packaging.

The Market size

Representative example of the **processed food market** consisting of more than **46 billion retail units** representing **3.1 million tonnes** of plastics use (http://www.crugroup.com)

Global production capacity of "bioplastics" by market segments (showing importance of rigid and flexible packaging). Data (2014, **1,7MT)** are projected forward with a significant growth capacity (<u>http://bio-based.eu</u>)

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement N° 745762.

Contact:

Coordinator BIOSMART: Dr. Amaya Igartua

(amaya.igartua@tekniker.es) and Dr. Ruth Diez

(ruth.diez@tekniker.es)

Tekniker MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE	CENTRO TECNOLÓGICO
University of Reading	TECSENSE S Tecsense
Université de Lille	propogroup
Charles Viollette	RI. SE
A Lipofabrik	W WIPAK
HEIA-FR HTA-FR	GEA engineering for a better world
Consejo asesor	
NatureWorks LLC	GEA engineering for a batter world
BIOSMART_ÉS ^{(Lever}	EROSKI