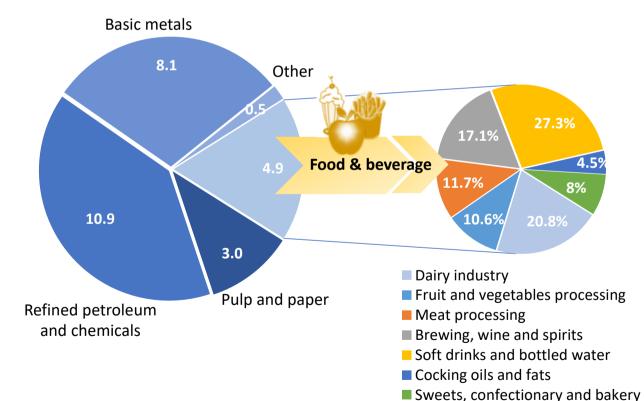
AFTERLIFE

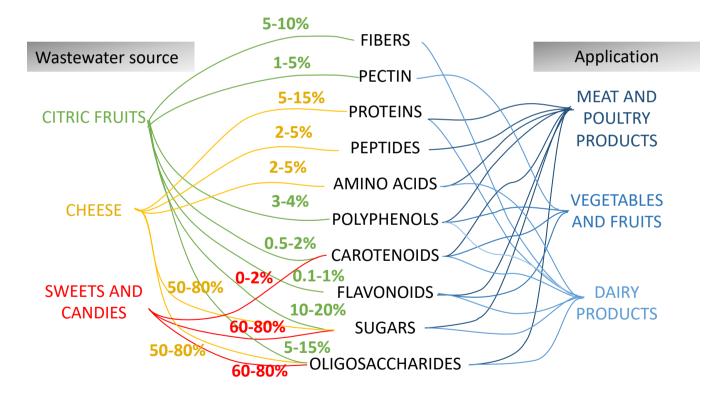
OCTOBER 15, 2019

WEBINAR- Advanced Filtration Technologies for the Recovery and Later conversion of relevant Fractions from wastewater

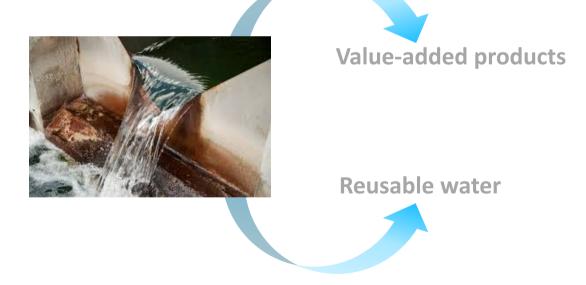
MARÍA LÓPEZ



AFTERLIFE has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No. 745737 .


Wastewater production in European industries

Wastewater from food processing: a great source of bio products!!



Focus on extraction and concentration techniques that will lead to the valorization of wastewater

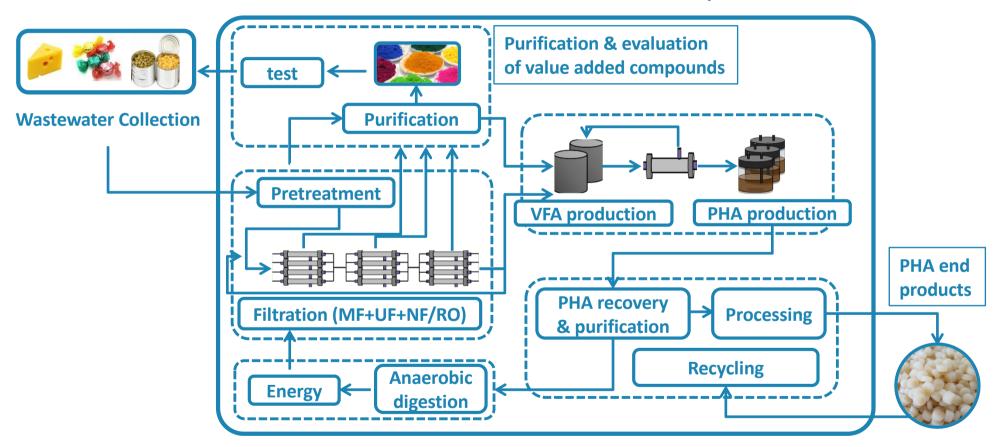
Green techniques

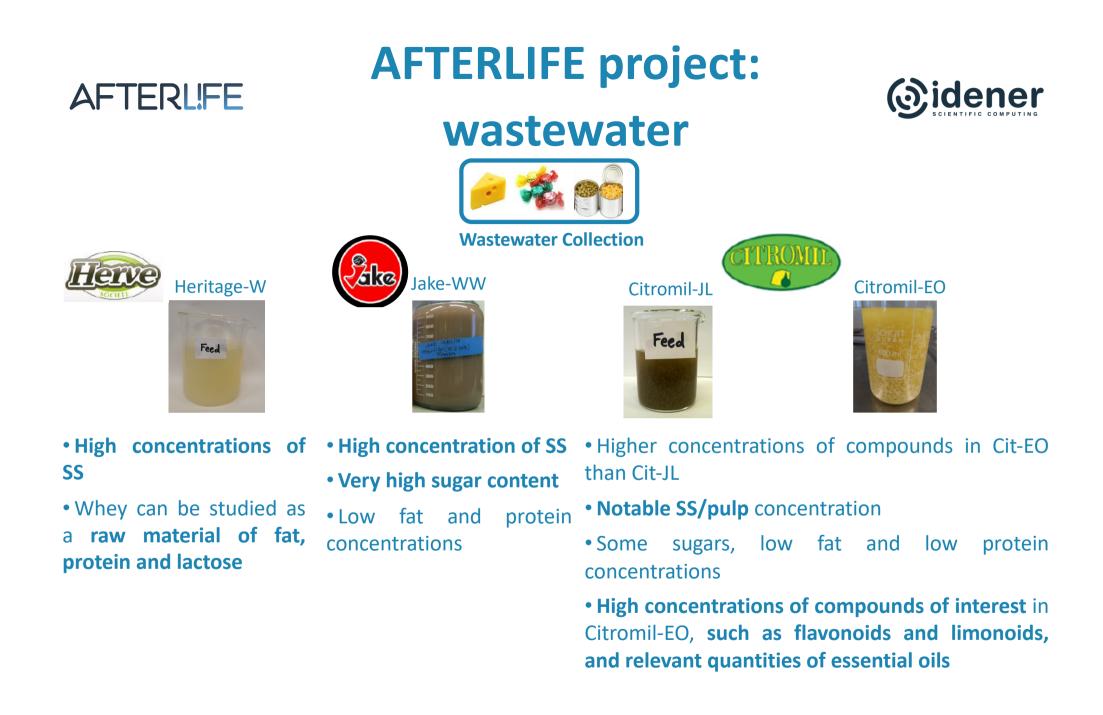
Cost-effective

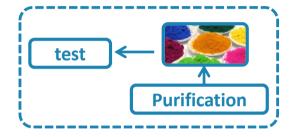
Flexible

Application of extraction techniques in AFTERLIFE wastewater valorisation: AFTERLIFE @idener project

- The AFTERLIFE project proposes a flexible, cost- and resource-efficient process for valorizing wastewater
- > It will represent an advance on existing approaches to wastewater treatment
- It will separate out the different components of value using a series of membrane filtration units
- These will then be treated to obtain high-pure extracts and metabolites or, alternatively, to be converted into value-added biopolymers
- In addition to the value extracted from the solids, the remaining outflow of the water will be ready for re-use






AFTERLIFE process

AFTERLIFE Extraction and purification

- Essential oils extraction with (microwave) distillation
- Use of enzymatic hydrolysis and pH modification for the extraction and fractionation of the compounds of interest (flavonoids, limonoids)
- Use of commercial resins for the refining (purity at least 4 times higher than the initial extract)
- Residue valorisation
- Tests for food applications

Webinar Speakers

Mr. Thibaut Derycke Team Leader Bioprocessing – BBEU

FILTRATION, SOLVENT EXTRACTION AND STEAM EXTRACTION, WITH AN EYE ON THE BIG NUMBERS

Dr. Javier Ceras Technical Investigator – Lurederra

RECOVERY OF NATURAL COMPOUNDS OF INTEREST FROM AGRIFOOD WASTES

AFTERLIFE Stakeholder Workshop

Save the dates for the AFTERLIFE stakeholder workshop at the 13th international conference on bio-based materials 12-13th May 2020

E Gold International Conference on Bio-based Materials 12–13 May 2020, Maternushaus, Cologne, Germany

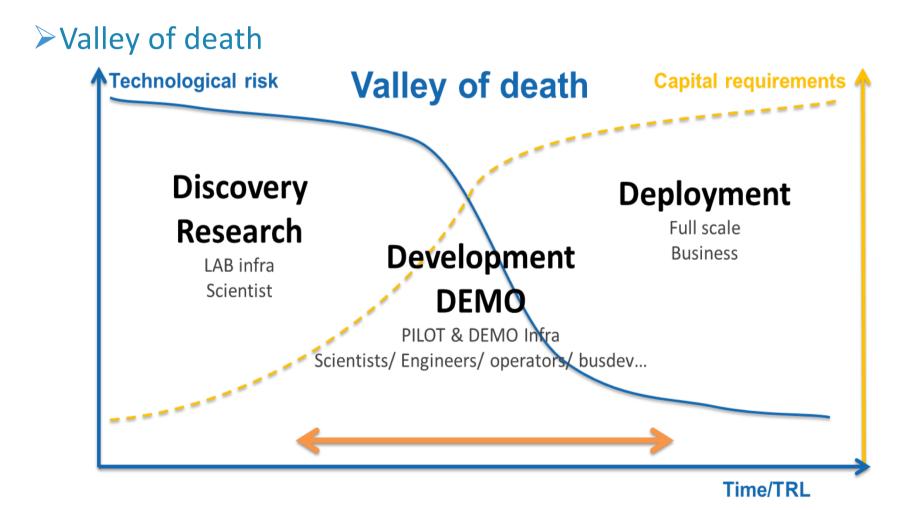
AFTERLE

WEBINAR- Advanced Filtration Technologies for the Recovery and Later conversion of relevant Fractions from wastewater

OCTOBER 15, 2019

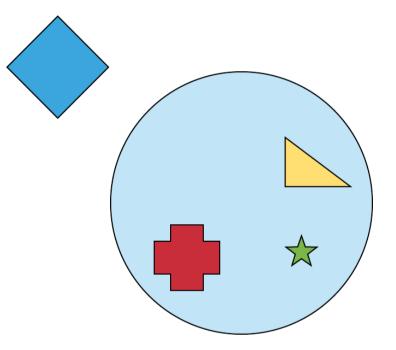
FILTRATION, SOLVENT EXTRACTION AND STEAM EXTRACTION, WITH AN EYE ON THE BIG NUMBERS

Thibaut Derycke thibaut.derycke@bbeu.org



AFTERLIFE has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No. 745737 .

AFTERL!FE



Define your stream

- Components of interest:
 - Size
 - Charge, IEP
- How many components are there to purify?
- How many components you do not want to purify?
- Purity requirements?

Multiple techniques

Size exclusion

- Dead end filtration
- Cross flow filtration
- Resin technology

Affinity

- Solvent extraction
- Steam extraction
- (Steam) distillation
- scCO2 extraction
- Ionic liquids
- Affinity chromatography

Density

- Centrifugation
- Decantation
- Flotation
- Flocculation

Iso electric point (I.E.P)

• electrophoresis

Multiple techniques

Size exclusion

- Dead end filtration
- Cross flow filtration
- Resin technology

Affinity

- Solvent extraction
- Steam extraction
- (Steam) distillation
- scCO2 extraction
- Ionic liquids
- Affinity chromatography

Density

- Centrifugation
- Decantation
- Flotation
- Flocculation

Iso electric point (I.E.P)

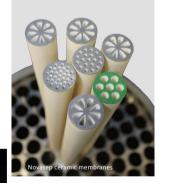
electrophoresis

Size exclusion

Dead end filtration

Fibrous materials Low retentate/permeate ratio

- + cheap membranes
- + straightforward
- + dry retentate
- Fouling
- Low throughput
- Not continuous
- Labour intensive
- Cleaning
- Can become expensive


Size exclusion

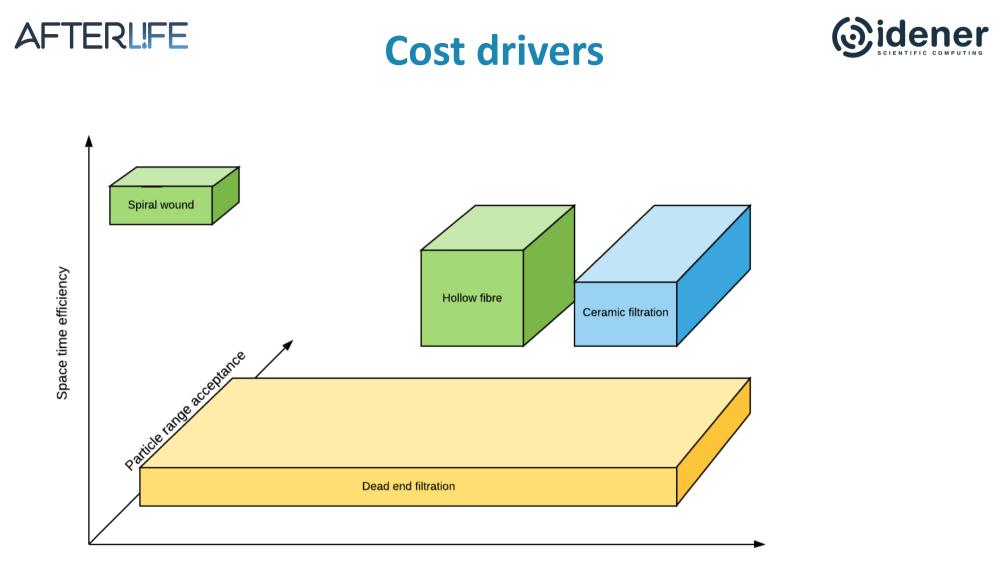
Cross flow filtration Fibrous materials High rententate/permeate ratio

- + High throughput
- + Space-time optimal
- + Continuous
- + Less prone to fouling
- + Cleanability
- More expensive
- Pre-purification might be required
- Dead volume

Size exclusion

Types

Spiral wound

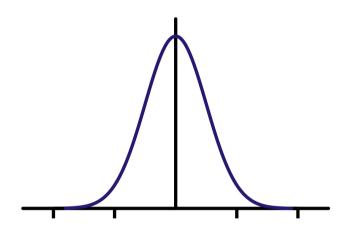

- Highest surface/space ratio
- Requires clean feed
 strainers
- High TMP possible 40-50 bar (think RO)

Hollow fibre

- Lower surface/space ratio
- Can deal with less clean feeds
- Medium TMP (+-3 bar)

Ceramic

- Lower surface/space ratio
- Most robust cross flow type
- Medium TMP (3-5 bar)


Cost/m²

Important parameters

- Cut-off
- Flux: 10 L/m²/h/bar
- Material choice:
 - PES, PA, CA, PS, PVDF, PTFE, TFC, PP, TFC PA,...
 - Compatibility with product
- Fouling of membranes: L/m²
- \Rightarrow Filter aids
- \Rightarrow Coagulating agents

Multiple techniques

Size exclusion

- Dead end filtration
- Cross flow filtration
- Resin technology

Affinity

- Solvent extraction
- Steam extraction
- Vacuum extraction
- scCO2 extraction
- Ionic liquids
- Affinity chromatography

Density

- Centrifugation
- Decantation
- Flotation
- Flocculation

Iso electric point (I.E.P)

electrophoresis

Solvent extraction

90

.

40

30

8

&

N

20

10

2

00

9

8

0

ę

°o

B

А

- + continuous
- + multi stage possible
- + Low energy input
- EX
- High quantities of solvent might be required
- Extraction other components
- Cost of solvent

Parameters:

- Feed rate
- pH aquous phase and pKa components
- Distribution ratio
- Separation extract/raffinate
- ⁸⁰ Compatibility with equipment
 - Evaporation energy solvent
 - Amount of stages required

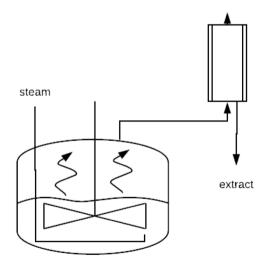
Steam distillation

Uses:

- Less thermostable components
- High boiling points matrices
- F.e. essential oils, aromatics

Pluses

- + straightforward
- + High heat transfer
- + More energy efficient compared to hydrodistillation


Downsides

- Often replaced by vacuum distillation, as energy cost is still relatively high
- separation of water/ organic phase required

Parameters

- Steam temperature
- Pressure
- Affinity
- DM% of material

non condensables

Uses:

Separation components with different vapour points

Vacuum distillation:

- Distillation at reduced pressure
- Increased differences of vapour pressures
- Lower CAPEX
- Slightly higher OPEX
- More efficient (fewer stages)

Parameters

- Feed(Q, T, X)
- Composition distillate
- Composition raffinate
- Design distillation column
 - Reflux/reboil ratio
 - Positioning feed
 - Amount of trays
 - Packing material

THANK YOU!

Webinar, María López, IDENER

AFTERLIFE

WEBINAR- Advanced Filtration Technologies for the Recovery and Later conversion of relevant Fractions from wastewater

OCTOBER 15, 2019

RECOVERY OF NATURAL COMPOUNDS OF INTEREST FROM AGRIFOOD WASTES

Dr. Javier Ceras javier.ceras@lurederra.es

AFTERLIFE has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No. 745737 .

Agri-Food Industry Wastes

≻What	Wastewaters By-products: considered wastes in most cases
≻Why	Huge amount of material Important source of high added value compounds Existing technologies are able to recover these valuables
≻But	Lab scale Marketable produts are still rare

Extraction Technologies

➢Green Extraction

(Chemat 2012)

processes which will reduce energy consumption,

allows use of alternative solvents and renewable natural products,

and ensure a safe and high quality extract/product

Identified solutions

improving and optimization of existing processes using non-dedicated equipment

innovation in processes and procedures but also in discovering alternative solvents

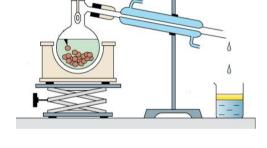
Extraction Technologies

>What's the objective?

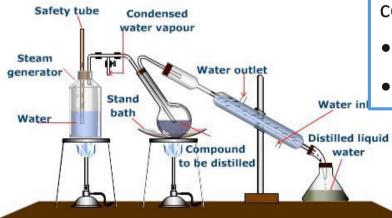
Different chemistry of compounds of interest

Co-extraction of different compounds

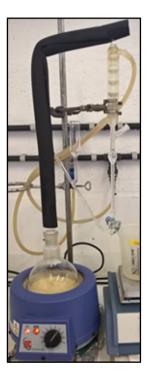
Definition of target compounds



AFTERLIFE Citromill Essential Oil Line Wastewaters:

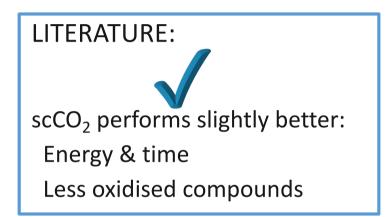


AFTERLIFE



Extraction of Essential Oils

Distillation


- oldest and easiest methods
- Energy and time-consuming
- Partial degradation of compounds of interest
- Easy of implementation
- Good results!!

> Distillation Vs scCO₂

➢Greener Improvements in Distillation of Essential Oils

Design, steam efficiency

Heat transfer

Microwave

Ultrasounds

Greener Improvements in Distillation of Essential Oils

- Less energy and time Vs standard distillation
- Less oxidation compounds
- Easy of implementation
- Good results!!

➢ Polyphenols

- Secondary metabolites
- Different roles in vegetal sources: growth promoters, defence against predators...
- Nutraceutical properties
- Found in a wide range of products: cereals, berries, brasicas, wine, tea...

Lignans	Stilbenes	Phenolic alcohols	Phenolic acids	Flavonoids
Enterodiol	Resveratrol	Hydroxytyrosol	Caffeic acid	Hesperetin
но он он он он	HO OH	НО ОН	но он но	
Antiviral Antihypertensive	Anti-inflamatory Cancer	Antioxidant Blood lipid levels	Antioxidant Anti-inflamatory	Anti-inflammatory Cancer

➢ Polyphenols

- Found as glycoside or as free form
- Properties and bioavailability depend on the food matrix
- Different chemistries, different solubilities...
- Sensitive to environmental factors (light, heat...)

AFTERLIFE Citromill Essential Oil Line Wastewaters:

Low yield of polyphenols extraction after Essential Oils recovery

Lysis of the polymer matrix is necessary

Enzyme-assisted extraction

- Non-conventional & environmental friendly technology
- Becoming very popular
- Enzymatic treatment as a pretreatment of the raw material
- Specific & selective process

Mechanism: Degradation of cell walls and membranes

- Cell wall composition: polysaccharides (pectin, cellulose, hemicellulose...)
- Mode of action of the selected enzyme(s)
- Operational conditions:

Enzyme concentration	Enzyme to substrate ratio
Temperature & time	рН
Stirring	Particle size

- Easy of test at laboratory scale
- Common food-grades enzymes work
- Low cost at small scale
- Mild conditions, enzymes can adapt to different environments

➤Limitations

- Large-scale application
- High costs for large volume
- Enzymatic behaviour at industrial scale
- Current availability of enzyme preparations

AFTERLIFE Citromill Essential Oil Line Wastewaters:

Promising results in initial tests with Pectinase 62L (P62) from Biocatalysts

➢Literature

ECOPEC project: ecological production of pectin from apple pomace and its use in organic jelly

Target Compounds	Source	Yields	Enzymes	Ref
Pectin	Chicory root	34,6g/100g	Mixture (cellulases, pectinase and protease)	Panouillé 2006
Lycopene	Tomato peel	0,11g/100g	Cellulase Pectinase	Choudhari 2007
Carotene	Carrot pomace	6,4mg/100g	Pectinase and Celllase	Stoll 2003
Phenolics	Citrus peel	90-162mg GAE/100g	Mixture Cellulases	Li 2006
Phenolics	Apple skin	105mgGAE/L	Mixture Pextinex Smash, Celluclast and Sumizyme	Pinelo 2008
Phenolics	Grape pomace	6g GAE/L	Pectinase (Grindamyl)	Meyer 1998
Phenolics	Apple pomace	908mg GAE/100g	Comercial Pectinases	Zheng 2008

AFTERLIFE

Ultrasounds

- Microjet impacts in the Surface of tissue
- Time and energy saving process

• Easy to handle and implement • Safe, economical and reproducible

• Non-conventional & environmental friendly technology

• Possible coupling to other technologies

➢ Mechanism: Acoustic Cavitation

- Collapse of gas bubbles as violent implosion
- Puntual/localized high Pressure & Temperature
- Shockwave induced damages in plant tissue

Time

Pressure

C

R

Implosion

Webinar, María López, IDENER

Lopez, i	DENER		

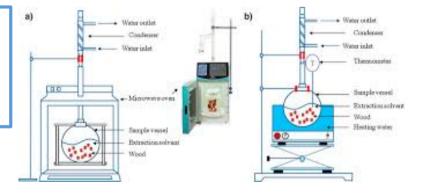
AFTERLIFE

➢Literature

Target Compounds	Source	Yields	Conditions	Ref
Pectin	Grapefruit peel	27.4g/100g	HCl aqueous solution pH 1.5 U.S. probe, 66.7ºC, 27,95 min	Wang 2015
Phenolics, Tocopherol	Olive leaves	41 mg Oleuropein eq /100g oil	Olive oil as solvent U.S. bath, 16ºC, 45 min	Achat 2012
Phenolics	Wheat bran	312 mgGAE/100g	Ethanol 64% U.S. bath, 60ºC, 25 min	Wang 2008
Phenolics	Coconut shell	22442mg GAE/100g	Ethanol 50% U.S. bath, 30ºC, 15 min	Rodrigues 2008
Phenolics	Apple pomace	555mg Catequin/100g	Water U.S. bath, 40ºC, 40 min	Pingret 2012
Phenolics	Chicory	723 mgGAE/100g	Ethanol 37.5% U.S. probe, 60ºC, 9.2 min	Pradal 2016
Phenolics	Apple pomace	964mg Catequin/100g	Ethanol 50% U.S. bath, 40ºC, 40 min	Virot 2010

Ultrasound-Assisted Extraction Parameters

- Ultrasonic Bath Vs Probe
- Continuous sonication Vs Pulsed mode
- Operation Frecuency
- Amplitud
- Solvent
- Pretreatment
- Temperature
- Time



Microwave-assisted extraction

- Non-conventional & environmental friendly technology
- Easy to handle and implement
- Safe, economical and reproducible
- Heat sensitive compounds (where rapid heating and shorter time is necessary)

\geq Effect of µwaves on molecules by ionic conduction and dipole rotation

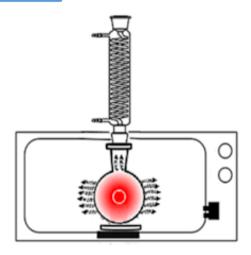
- Non ionizing radiation to heat molecules
- Quickly heating of solvent
- Solvent-free process is possible

Webinar, María López, IDENER

www.afterlife-pro	niact au
	JELLEU

Target Compounds	Source	Yields	Conditions	Ref
Pectin	Papaya peel	25.4g/100g	HCl aqueous solution pH 1.8 512W; .140 sec	Prakash Maran 2014
Lycopene	Tomato leaves	13,6 g/100g oil	Hexane-ethyl acetate 400W	Ho 2015
Phenolics	Citrus peels	1220 mgGAE/100g	acetone 51% 500W, 122 sec	Nayak 2015
Phenolics	Mandarin peels	2320mg GAE/100g	Water 400W, 180 sec	Ahmad 2012
Phenolics	Peanut skin	14360mg GAE/100g	Ethanol 30% 90% of power, 30 sec	Ballard 2010
Phenolics	Myrtus leaves	16249mgGAE/100g	Ethanol 42% 500W, 62 sec	Dahmaune 2015
Phenolics	Potato waste	1100mg GAE/100g	Ethanol 60% 80ºC, 120 sec	Wu 2012

➢Literature



Microwave-Assisted Extraction Parametres

- Solvent type and volume
- Solid to solvent ratio
- Operation Power
- •Temperature
- Time

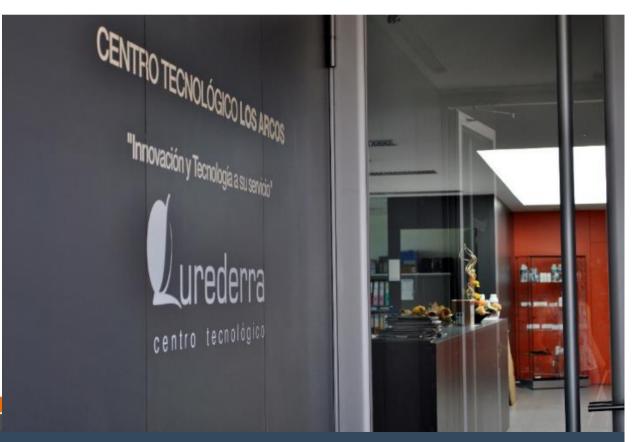
➢ PERSPECTIVES

Combination of Green Technologies

Bio-refinery Concept

Process Analysis

> APPLICATION


"A project focused on the recovery technologies without establishing definite applications of the final product, is doomed to fail"

(Galanakis 2017)

THANK YOU !!

Lurederra@Lurederra.es

Javier.ceras@Lurederra.es

www.lurederra.es

Tfno.: +34 948 64 03 18 Fax: +34 948 64 03 19

Área Industrial "Perguita", Calle A, nº 1

31210 - Los Arcos (Navarra-España)

Webinar, María López, IDENER

www.afterlife-project.eu